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MEI Structured Mathematics

Mathematics is not only a beautiful and exciting subject in its own right but also
one that underpins many other branches of learning. It is consequently
fundamental to the success of a modern economy.

MEI Structured Mathematics is designed to increase substantially the number of
people taking the subject post-GCSE, by making it accessible, interesting and
relevant to a wide range of students.

It is a credit accumulation scheme based on 45 hour units which may be taken
individually or aggregated to give Advanced Subsidiary (AS) and Advanced GCE
(A Level) qualifications in Mathematics and Further Mathematics. The units may
also be used to obtain credit towards other types of qualification.

The course is examined by OCR (previously the Oxford and Cambridge Schools
Examination Board) with examinations held in January and June each year.

This is one of the series of books written to support the course. Its position
within the whole scheme can be seen in the diagram above.
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Mathematics in Education and Industry (MEI) is an independent curriculum

development body which aims to promote links between education and industry in

mathematics. MEI produce relevant examination specifications at GCSE, AS and A

Level (including Further Mathematics) and for Free Standing Mathematics

Qualifications (FSMQs); these are examined by OCR.

In partnership with Hodder Murray, MEI are responsible for three major series of

textbooks: Formula One Maths for Key Stage 3, Hodder Mathematics for GCSE and

the MEI Structured Mathematics series, including this book, for AS and A Level.

As well as textbooks, MEI take a leading role in the development of on-line resources

to support mathematics. The books in this series are complemented by a major MEI

website providing full solutions to the exercises, extra questions including on-line

multiple choice tests, interactive demonstrations of the mathematics, schemes of

work, and much more.

In recent years MEI have worked hard to promote Further Mathematics and, in

conjunction with the DfES, they are now establishing the national network of

Further Mathematics Centres.

MEI are committed to supporting the professional development of teachers.

In addition to a programme of Continual Professional Development, MEI, in

partnership with several universities, co-ordinate the Teaching Advanced

Mathematics programme, a course designed to give teachers the skills and

confidence to teach A Level mathematics successfully.

Much of the work of MEI is supported by the Gatsby Charitable Foundation.

MEI is a registered charity and a charitable company.

MEI’s website and email addresses are www.mei.org.uk and office@mei.org.uk.
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Introduction

This book covers the MEI Structured Mathematics AS unit (or module) FP1

Further Concepts for Advanced Mathematics. This unit is a requirement for AS and

A Levels in Further Mathematics in this specification. It provides an introductory

course for important areas of pure mathematics that are not covered by the 

A Level Subject Criteria (and so do not feature in the units C1 to C4).

The material in this book is also relevant to other AS Further Mathematics

specifications and so it will be found useful by all students at this level.

Throughout the series the emphasis is on understanding rather than mere

routine calculations, but the various exercises do nonetheless provide plenty of

scope for practising basic techniques. Extensive on-line support is available via

the MEI wesite, www.mei.org.uk.

This book is designed to be accessible to those who have just taken Higher Tier

GCSE Mathematics. Alternatively it is equally suitable for those who have just

taken AS Mathematics. The main prerequisite is a reasonable level of fluency and

accuracy in basic algebra.

This is the third edition of this series. Much of the content in this book was

previously covered in Pure Mathematics 4 but it has now been substantially

rewritten to make it suitable as an AS unit, and in addition it has been

reorganised to meet the requirements of the new specification being first taught

in September 2004.

Catherine Berry

Terry Heard

David Martin
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Key to symbols in this book

This symbol means that you may want to discuss a point with your

teacher. If you are working on your own there are answers in the back of

the book. It is important, however, that you have a go at answering the

questions before looking up the answers if you are to understand the

mathematics fully.

This is a warning sign. It is used where a common mistake,

misunderstanding or tricky point is being described.

This is the ICT icon. It indicates where you should use a graphic calculator

or a computer.

● This symbol and a dotted line down the right-hand side of the page

indicates material which is beyond the criteria for the unit but which is

included for completeness.

Harder questions are indicated with stars. Many of these go beyond the

usual examination standard.
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Matrices

As for everything else, so for a mathematical theory – beauty can be

perceived but not explained.

Arthur Cayley, 1883

Figure 1.1 shows a pack of cards. Initially the cards are piled up neatly forming a

cuboid, but two other arrangements are shown.

●? Describe what has happened in words. Can you suggest ways of representing this

symbolically?

In this chapter you will learn about matrices, and how they give you the ability to

use algebraic techniques in geometrical and other situations. Matrices are often

used when creating effects on TV – particularly when the picture is rotated,

flipped, enlarged or reduced.

Matrices

Figure 1.2 shows the number

of ferry crossings per hour

offered by a certain ferry

company from English to

Continental ports during

peak times.
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This information can be represented as an array of numbers, called a matrix

(plural matrices).

To

Z C B

D 1 2 1
From ( )F 0 2 1

●? What information does the zero in the matrix give?

Any rectangular array of numbers is known as a matrix. It is usual to represent

matrices by capital letters, often in bold print. (In handwriting, use a capital letter

with a wavy line under it.)

A matrix consists of rows and columns, and the entries in the various cells are 

known as elements. The matrix M = ( ) representing the ferry crossings has 

six elements, arranged in two rows and three columns. We describe M as a 2 × 3

matrix, and this is known as the order of the matrix. It is important to note that

you state the number of rows first, then the number of columns.

Matrices such as ( ) and ( ) which have the same number of rows 

as columns are known as square matrices.

The matrix O = ( ) is known as the 2 × 2 zero matrix.

Working with matrices

The number of crossings offered per hour by the ferry company is the same for

every hour in the ten-hour period from 9 am until 7 pm.

●? What matrix represents the total number of ferry crossings offered by this

company between the hours of 9 am and 7 pm?

The number of ferry crossings per hour offered by a second ferry company

between the same ports is shown by the following matrix.

( ) 3   1   1
2   1   0

0   0
0   0

3   2
5   3

1   3   –2
–7   5     4
9   0     6

1   2   1
0   2   1
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●? What matrix represents the total number of ferry crossings per hour offered by

the two companies?

This example shows that matrices can be multiplied by a number or added

together.

To multiply a matrix by a number, multiply each element by that number.

3 × ( ) = ( )
You can add or subtract matrices of the same order element by element:

( ) + ( ) = ( )

( ) – ( ) = ( )
But ( ) + ( ) cannot be evaluated because the matrices are not of the same 

order. They are incompatible, or do not conform.

●? Explain why matrix addition is:

(i) commutative, i.e. A + B = B + A
(ii) associative, i.e. A + (B + C) = (A + B) + C.

Equality of matrices

Two matrices are equal if and only if they have the same order and each element

in one matrix is equal to the corresponding element in the other matrix. If, for

example,

A = ( ) B = ( ) C = ( ) D = ( )
then A and D are equal but no other pair of matrices from A, B, C and D is equal.

EXERCISE 1A For Questions 1 and 2 use:

A = ( ) B = ( ) C = ( )

D = ( ) E = ( ) F = ( )–1     6
3     2
8   –4

5     2
0   –1

–2     4

–3   6     0
1   2   –1

2   1   5
3   0   1

–2     3
1   –4

1     2
3   –1

1   3
2   4

1   3   0
2   4   0

1   2
3   4

1   3
2   4

1
0

1   3
2   4

–3     6
5   –2

–2     0

4   –2
–3     7
5     6

1   4
2   5
3   6

6     3
0   11

5   0
–2   7

1   3
2   4

3     9
6   12

1   3
2   4

E
xercise 1

A
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3



1 Write down the order of these matrices.

(i) A (ii) C (iii) E

2 Calculate, if possible, the following.

(i) A + B (ii) C – D (iii) A + F
(iv) 3B (v) 3E – 2F (vi) 2D – A

3 The diagram below shows the number of direct flights on one day offered by

an airline between cities P, Q, R and S. 

The same information is also given in the partly-completed matrix X.

To

P Q R S

From P 0 2 1 0

Q 1
X = ( )R

S

(i) Copy and complete the matrix X.

A second airline also offers flights between these four cities. The 

following matrix represents the total number of direct flights offered 

by the two airlines.

0   2   3   2

( 2   0   2   1 )2   2   0   3

1   0   3   0

(ii) Find the matrix Y representing the flights offered by the second airline.

(iii) Draw a diagram similar to the one above, showing the flights offered by

the second airline.

4 Four local football teams took part in a competition in which they each played

each other twice, once at home and once away.

Here is the results matrix after half of the games had been played.

Goals Goals
Win Draw Lose for against

City 2 1 0 6 3

Rangers 0 0 3 2 8(                                   )Town 2 0 1 4 3

United 1 1 1 5 3
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(i) The results of the next three matches are as follows.

City 2 Rangers 0

Town 3 United 3

City 2 Town 4

Find the results matrix for these three matches and hence find the

complete results matrix for all the matches so far.

(ii) Here is the complete results matrix for the whole competition.

( )
Find the results matrix for the last three matches (City v United, Rangers v

Town and Rangers v United) and deduce the result of each of these three

matches.

5 A mail-order clothing company stocks a jacket in three different sizes and four

different colours. 

The matrix P = ( ) represents the number of jackets in stock at 

the start of one week.

The matrix Q = ( ) represents the number of orders for jackets

received during the week.

(i) Find the matrix P – Q. 

What does this matrix represent? 

What does the negative element in the matrix mean?

A delivery of jackets is received from the manufacturers during the week. 

The matrix R = ( ) shows the number of jackets received.

(ii) Find the matrix which represents the number of jackets in stock at the end

of the week after all the orders have been dispatched.

(iii) Assuming that this week is typical, find the matrix which represents sales

of jackets over a six-week period. 

How realistic is this assumption?

5   10   10     5
10   10     5   15
0     0     5     5 

2   5   3   0
1   3   4   6
5   0   2   3

17     8   10   15
6   12   19     3

24   10   11     6

4   1   1   12     8
1   1   4     5   12
3   1   2   12   10 
1   3   2   10     9

E
xercise 1

A

1
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Transformations

You are probably already familiar with several different types of transformation,

including reflections, rotations and enlargements. The original shape or point is

sometimes called the object and the new shape or point, after the transformation,

is called the image.

Some examples of transformations are illustrated in figure 1.3.

In this section you will also meet two other types of transformation which may

be new to you: the two-way stretch and the shear. Examples of these are illustrated

in figure 1.4.
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So far you have described transformations using words. You have to include

information about mirror lines for reflections, information about centre, angle

and direction for rotations, and so on. For some transformations, all the

information about the transformation can be given in the form of a matrix.

Figure 1.5 shows a flag rotated 90° anticlockwise about the origin.

This table shows the effect of the rotation on the co-ordinates of each point on

the flag.

Tran
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Point Co-ordinates Image point Co-ordinates 

O (0, 0) O (0, 0) 

P (0, 1) P′ (–1, 0) 

Q (0, 2) Q′ (–2, 0) 

R (1, 2) R′ (–2, 1) 

S (1, 1) S′ (–1, 1) 



You can describe the effect of this rotation by saying that the x and y co-ordinates

have been exchanged and the sign of the original y co-ordinate has been changed.

You can express this algebraically as

x′ = –y{y′ = x.

Many other transformations, such as reflections and enlargements, can be

expressed as a pair of equations of the form

x′ = ax + cy{y′ = bx + dy

where a, b, c and d are constants.

You can summarise a pair of equations like this by writing just the coefficients in 

the form of a matrix: ( ).

●? What are the values of a, b, c and d for the transformation shown in figure 1.5?

ACTIVITY 1.1 Figure 1.6 shows the effect of two other transformations on the flag OPQRS,

shown in figure 1.5.

In each case, find the co-ordinates of the points P′, Q′, R′ and S′ and express the 

transformation in the form { . 

Hence find the matrix of each transformation.

Straight lines

The diagrams in this chapter so far have shown the images of straight lines as

straight lines. You should assume that this is the case for any transformation

which can be represented by a matrix. So the image of a line through the points A

and B is the line through the image points A′ and B′.

x′ = ax + cy
y′ = bx + dy

a   c
b   d

M
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EXAMPLE 1.1 A transformation (an example of a shear) maps points as follows:

● each point is moved parallel to the x axis

● each point is moved twice its distance from the x axis

● points above the x axis are moved to the right

● points below the x axis are moved to the left.

Figure 1.7 shows a flag, and points P and Q and their images P′ and Q′.

(i) Copy the diagram and draw the image of the flag.

(ii) Show that the image of (x, y) is the point (x + 2y, y) and find the matrix

which represents this transformation.

SOLUTION

(i)

(ii) The distance of the point (x, y) from the x axis is y units.

The point (x, y) moves 2y units parallel to the x axis so its new position is 

(x + 2y, y).

(Notice that if y is negative, then this means moving to the left.)

The transformation can be written as

{
so the matrix which represents this transformation is ( ).1   2

0   1

x′ = 1x + 2y
y′ = 0x + 1y
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y
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Figure 1.8

P is 1 unit above the 
x axis, Q is 2 units
below the x axis.

B and C are 3 units above the 
x axis, so move 6 units to the right; 
D and E are 1 unit above the x axis, 

so move 2 units to the right. A is 
1 unit below the x axis, so moves

2 units to the left.
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EXAMPLE 1.2 Draw the triangle ABC, where A is the point (1, 0), B is the point (3, 0) and C is

the point (3, 1).

Draw the image A′B′C′ of the triangle under the transformation represented by 

the matrix ( ) and describe the effect of the transformation.

SOLUTION

The matrix ( ) represents the transformation { .

The co-ordinates of A′ are therefore (0, 1), the co-ordinates of B′ are (0, 3) and

the co-ordinates of C′ are (1, 3).

The effect of the transformation is a reflection in the line y = x.

ACTIVITY 1.2 Investigate the effects of the transformation matrices ( ) and ( ).

Notice that substituting x = 0 and y = 0 into { gives { .

This means that whenever you can represent a transformation by a matrix in the way

described above, the image of the origin O is O. Thus you can only use this method

of representing a transformation if the origin is a point which does not move.

● Rotations can only be represented in this way if the centre of rotation is at O.

● Reflections can only be represented in this way if the mirror line passes

through O.

● Enlargements can only be represented in this way if the centre of enlargement

is at O.

●? Explain why it is not possible to represent translations by matrices in this way.

x′ = 0
y′ = 0

x′ = ax + cy
y′ = bx + dy

0   0
0   1

1   0
0   0

x′ = y
y′ = x

0   1
1   0

0   1
1   0

O 1 2 3

1

2

3

4

y

x

A′

B′
C′

y = x

4

C

BA

Figure 1.9



The columns of a matrix

It is useful to look at the effect of the transformation represented by the matrix 

M = ( ) on the points I and J with co-ordinates (1, 0) and (0, 1).

Substituting x = 1, y = 0 in the defining equations { you find that I′, 

the image of I, has co-ordinates (a, b), which is the first column of matrix M. 

Similarly J′, the image of J, has co-ordinates (c, d), the second column of M. 

The connection between the co-ordinates of I′ and J′ and the matrix representing

a transformation provides you with a quick and usually easy way of finding 

the matrix.

EXAMPLE 1.3 Find the matrix which represents a rotation through angle θ anticlockwise about

the origin.

SOLUTION

Figure 1.10 shows the points I(1, 0) and J(0, 1) and their images I′ and J′ after

rotation through angle θ anticlockwise about the origin.

From Figure 1.10, cosθ = ⇒ a = cosθ

sinθ = ⇒ b = sinθ. 

Therefore I′ is (cosθ, sinθ) and J′ is (–sinθ, cosθ).

The transformation matrix is ( ).

●? What matrix represents a rotation through angle θ clockwise about the origin?

cosθ –sinθ
sinθ cosθ

b–
1

a–
1

x′ = ax + cy
y′ = bx + dy

a   c
b   d
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J(0, 1)

I(1, 0)

I′(a, b)

b

a

1

O

J′(–b, a)

a

b

y

x

1

Figure 1.10

You can see that OI ′ = OI = OJ ′ = OJ = 1.

By symmetry, if the co-ordinates of I ′ are (a, b)
then the co-ordinates of J ′ are (–b, a).



Make sure that you are able to spot a rotation matrix. Remember that either or

both of cosθ and sinθ may be negative for values of θ between 90° and 360°.

ACTIVITY 1.3 Investigate rotation matrices for 

(i) angles between 90° and 180°

(ii) angles between 180° and 270°

(iii) angles between 270° and 360°.

● Transformations in three dimensions

So far your work has applied to transformations of sets of points from a plane

(i.e. two dimensions) to the same plane. Similar procedures apply when you

transform a set of points within three-dimensional space.

The shear illustrated in figure 1.11 is defined by the equations {
so you can represent this transformation by the matrix ( ).

Figure 1.12 illustrates a reflection in the plane y = 0 (i.e. the plane containing the

x and z axes).

This transformation is represented by the matrix ( ).1     0   0
0   –1   0
0     0   1

1   0   0
0   1   1
0   0   1

x′ = x
y′ = y + z
z′ = z
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Figure 1.11

Figure 1.12



EXERCISE 1B 1 The diagram shows a triangle with 
vertices at O, A(1, 2) and B(0, 2).

For each of the transformations below

(a) draw a diagram to show the effect of the transformation on triangle OAB

(b) give the co-ordinates of A′ and B′, the images of points A and B

(c) find expressions for x′ and y′, the co-ordinates of P′, the image of a general

point P(x, y)

(d) find the matrix of the transformation.

(i) Enlargement, centre the origin, scale factor 3

(ii) Reflection in the x axis

(iii) Reflection in the line x + y = 0

(iv) Rotation 90° clockwise about O

(v) Two-way stretch, scale factor 3 horizontally and scale factor vertically

2 The triangle OAB in question 1 is rotated through 20° anticlockwise about 

the origin. 

Use the transformation matrix ( ) to find the co-ordinates of A′

and B′, the images of A and B under this transformation. 

Give your answers to 3 decimal places.

3 Each of the following matrices represents a rotation about the origin. 

Find the angle and direction of rotation in each case.

–

(i) ( ) (ii)  ( )

– – –

(iii) ( ) (iv)  ( )– – –

4 For each of the matrices below 

(a) draw a diagram to show the effect of the transformation it represents on

the triangle OAB in question 1

(b) give the co-ordinates of A′ and B′
(c) give a full description of the transformation.

(i) ( ) (ii) ( ) (iii) ( )
(iv) ( ) (v) ( ) (vi) ( )0.6   –0.8

0.8     0.6
–1     0
0   –1

1   3
0   1

q-∑ 0
0   q-∑

2   0
0   3

–1   0
0   1

3––
2

1–
2

1––
2

1––
2

1–
2

3––
2

1––
2

1––
2

1–
2

3––
2

0.574   –0.819
0.819     0.574

3––
2

1–
2

cosθ –sinθ
sinθ cosθ

1–
2

E
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5 The unit square OABC has its vertices at (0, 0), (1, 0), (1, 1) and (0, 1). 

OABC is mapped to OA′B′C′ by the transformation defined by the matrix ( ).
Find the co-ordinates of A′, B′ and C′ and show that the area of the shape has

not been changed by the transformation.

6 A transformation maps P to P′ as follows:

● each point is mapped on to the line y = x

● the line joining a point to its image is parallel to the y axis.

Find the co-ordinates of the image of the point (x, y) and hence show that this

transformation can be represented by means of a matrix. 

What is that matrix?

● The remaining questions relate to enrichment material.

7 Find the matrices which represent the following transformations of three-

dimensional space.

(i) Enlargement, centre O, scale factor 3

(ii) Rotation 180° about the z axis

(iii) Reflection in the plane x = 0

8 Describe the transformations represented by these matrices.

(i) ( ) (ii) ( ) (iii) ( )
Multiplying matrices

The co-ordinates (x, y) of a point P in two dimensions can be written as the 

column vector ( ). This is called the position vector of the point P. A column 

vector is a 2 × 1 matrix and is sometimes called a column matrix. Column vectors

are often represented by lower case bold letters such as p or v. In handwriting, a

lower case letter with a wavy line underneath is used.

Using this notation allows you to write the effect of a transformation as a matrix 

product. The transformation defined by the matrix M = ( ) maps the point P 

with position vector p = ( ) to the point P′ with position vector p′ = ( ).

You can write p′ = ( ).

The 2 × 1 matrix p′ is the product of the 2 × 2 matrix M with the 2 × 1 matrix p,

in that order.

( ) ( ) = ( )2x + 5y
4x + 3y

x
y

2   5
4   3

2x + 5y
4x + 3y

x′
y′

x
y

2   5
4   3

x
y

2   0   0
0   3   0
0   0   q-∑

1   0     0
0   1     0
0   0   –1

1     0   0
0     0   1
0   –1   0

4   3
5   4
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EXAMPLE 1.4 Calculate ( )( ) .

SOLUTION

1 × 5 + 6 × 8 = 53

Row from left matrix with

( )( ) = ( ) column from right matrix.

3 × 5 + 4 × 8 = 47

A similar technique applies to all matrix multiplications. You use each row of the

first (i.e. left) matrix with each column, in turn, of the second matrix. Figure 1.14

shows the steps used when multiplying a 2 × 2 matrix by a 2 × 3 matrix. The

product is another 2 × 3 matrix.

3 × 6 + 5 × 1 = 23

3 × 7 + 5 × 8 = 61

3 × 9 + 5 × 0 = 27

( )( ) = ( )
2 × 6 + 4 × 1 = 16

2 × 7 + 4 × 8 = 46

2 × 9 + 4 × 0 = 18

If you multiply a 3 × 4 matrix (on the left) by a 4 × 2 matrix (on the right) similar

rules apply: the product is a 3 × 2 matrix. For example:

( )( ) = ( ).
39   59

–43   19
42   49

5   1
–6   4
8   9
2   2

1   2   4   7
–3   5   0   1
4   2   3   5

23   61   27
16   46   18

6    7    9
1    8    0

3   5
2   4

53
47

5
8

1   6
3   4

5
8

1   6
3   4
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Matrix products and transformations

Figure 1.15 shows the flag ABCD and its image A′B′C′D′ after applying the 

rotation matrix ( ).

You can write the co-ordinates of A, B, C and D as the single 2 × 4 matrix

( ). This provides a quick method of finding the co-ordinates of 

A′, B′, C′ and D′.

ACTIVITY 1.4 By calculating the product ( )( ), check that the points A′, B′, C′

and D′ in figure 1.15 have been plotted correctly.

Other applications of matrix multiplication

The use of matrices to describe transformations is just one of the many
applications of matrices. You saw some other uses of matrices at the start of this
chapter and others are explored in Exercise 1C.

EXAMPLE 1.5 A pizza company wants to set up a computer program to keep track of orders.
Pizzas are available in three sizes: Regular, Large and Family, and four
combinations of toppings: Hawaiian, Seafood, Meat Feast and Vegetarian. 
The number of pizzas of each type is entered in the form of a 4 × 3 matrix P.

One day the matrix P, representing the orders, is as follows.

Toppings

H S M V

R 2 3 0 1

Sizes L ( 5 7 8 4 )
F 6 4 3 3

(i) Find a matrix A so that the product PA gives the number of each size of base
required, and hence find the matrix representing the number of each size of
base required on this day.

0   1   1   1
2   2   1   0

0.8   –0.6
0.6     0.8

0   1   1   1
2   2   1   0

0.8   –0.6
0.6     0.8
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(ii) A regular pizza requires 1 quantity of topping, a large pizza requires 1.5
quantities of topping and a family-size pizza requires 2 quantities of topping.
Find a matrix B so that the product BP gives the quantities of each type of
topping required, and hence find the matrix representing the quantities of
each type of topping required on this day.

(iii) The cost of each size of pizza, in pounds, whatever the topping, is given by
the matrix C = (2.5   3.5   4).
What matrix product will give the total cost of the pizzas?
Find the total cost of this day’s pizzas.

SOLUTION

(i) You need to find a matrix A so that

( ) A = ( ).
The matrix A is therefore ( ).

( )( ) = ( )
(ii) You need to find a matrix B so that

B( ) = (1 × 2 + 1.5 × 5 + 2 × 6           ...           ...           ...).

The matrix B is therefore (1   1.5   2).

(1   1.5   2)( ) = (21.5   21.5   18   13)

(iii) You already know that the matrix product PA gives the total number of each

size of pizza in the form of a 3 × 1 matrix. To find the total cost, you need to

pre-multiply this product by C.

The total cost is given by the product CPA.

CPA = (2.5   3.5   4)( )( )
= (2.5   3.5   4)( )
= (163)

The total cost is £163.

6
24
16

1
1
1
1

2   3   0   1
5   7   8   4
6   4   3   3

2   3   0   1
5   7   8   4
6   4   3   3

2   3   0   1
5   7   8   4
6   4   3   3

6
24
16

1
1
1
1

2   3   0   1
5   7   8   4
6   4   3   3

1
1
1
1

2 + 3 + 0 + 1
5 + 7 + 8 + 4
6 + 4 + 3 + 3

2   3   0   1
5   7   8   4
6   4   3   3
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Properties of matrix multiplication

Matrices must be conformable for multiplication

To be able to multiply two matrices together, the number of columns in the first

(left) matrix must equal the number of rows in the second matrix. For example, if

the first matrix is 3 × 4, the second must be 4 × something. You say that the

matrices need to conform.

Generally, if M is of order p × q, and N is of order q × r, the product MN exists

and is of order p × r. It may be helpful to think of the rules for joining dominoes

end to end.

gives

Matrix multiplication is not commutative

You have already seen that matrix addition is commutative, i.e. A + B = B + A.

However, matrix multiplication is not commutative. 

If A = ( ) and B = ( ), the product AB is given by

AB = ( )( ) = ( )
and the product BA is given by

BA = ( )( ) = ( ).
So AB ≠ BA. It matters which way round you write your matrices. 

Sometimes the product MN exists but the product NM does not exist, because

the number of columns in N does not match the number of rows in M.

●? If A = ( ), B = ( ) and C = ( ), which of the products AB, BA, AC, 

CA, BC and CB exist?

Matrix multiplication is associative

Whenever matrices P, Q, R are conformable for multiplication, (PQ)R = P(QR).

This is the associative property of matrix multiplication.

k   m   o
l    n    p

e   h
f    i
g  j

a   c
b   d

8   –10
13     36

3   1
2   7

4   –2
1     5

13   –1
15   31

4   –2
1     5

3   1
2   7

4   –2
1     5

3   1
2   7
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ACTIVITY 1.5 Using P = ( ), Q =( ) and R = ( ), find

(i) PQ (ii) (PQ)R (iii) QR (iv) P(QR)

and so demonstrate that matrix multiplication is associative.

Note

Since (PQ)R = P(QR), the brackets are not needed and the product can be written

simply as PQR.

You will see how transformations justify the associativity of matrix multiplication

on page 25.

● Matrix multiplication is distributive over matrix addition

Provided the matrices P, Q and R conform so that the sums and products exist,

P(Q + R) = PQ + PR
and (P + Q)R = PR + QR.

These two properties are what we mean when we say that matrix multiplication is

distributive over matrix addition.

ACTIVITY 1.6 Using P = ( ), Q = ( ) and R = ( ), find

(i) P(Q + R) (ii) PQ + PR
(iii) (P + Q)R (iv) PR + QR

and so demonstrate the distributive property of matrix multiplication over

matrix addition.

The identity matrix

Whenever you multiply a 2 × 2 matrix M by I = ( ) the product is M.

It makes no difference whether you pre-multiply by I, as in

( )( ) = ( )
or post-multiply by I, as in

( )( ) = ( ).
For multiplication of 2 × 2 matrices, I behaves in the same way as the number 1

when dealing with the multiplication of real numbers. I is known as the 2 × 2

identity matrix.

a   c
b   d

1   0
0   1

a   c
b   d

3     5
7   –2

3     5
7   –2

1   0
0   1

1   0
0   1

i   k
j   l

e   g
f   h

a   c
b   d

i   k
j   l

e   g
f   h

a   c
b   d
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The 3 × 3 identity matrix, I3, is ( ).

ACTIVITY 1.7 Show that I3M = MI3 = M for a 3 × 3 matrix of your choice.

●? Why is there no such thing as a 2 × 3 identity matrix?

ACTIVITY 1.8 Find out how to input matrices into your calculator. Particularly notice whether

the calculator encourages you to input by rows or columns. 

Find out how to add and multiply matrices on your calculator.

Historical note

The multiplication of matrices was first fully defined by Arthur Cayley (1821–95) in 1858. Cayley’s

mathematical talent was noticed while he was at school (in London), and his first mathematical paper

was published in 1841, while he was an undergraduate at Cambridge. He worked as a lawyer for some

14 years, refusing more cases than he accepted as he only wanted to earn sufficient to enable him to 

get on with ‘his work’; during this period he published nearly 200 mathematical papers. In 1863 he

returned to Cambridge as a professor. As well as his work on matrices, he developed the geometry 

of n-dimensional spaces and is known for his work on the theory of invariants, much of this in

collaboration with his life-long friend, James Joseph Sylvester (1814–97). It was Sylvester who, in 

1850, coined the word ‘matrix’, Latin for ‘womb’; in geology a matrix is a mass of rock enclosing 

gems, so in mathematics a matrix is a container of (valuable) information. It was at about this time that

Florence Nightingale was one of Sylvester’s students.

EXERCISE 1C In questions 1–3 use:

A = ( ) B = ( ) C = ( )

D = ( ) E = ( ) F = ( )
1 Calculate, if possible, the following.

(i) AB (ii) CA (iii) BC
(iv) CD (v) DC (vi) AF
(vii) BE (viii) 4F + EC (ix) EA
(x) FE (xi) EF (xii) A2

2 By calculating, if possible, AB, BA, AD and DA demonstrate that matrix

multiplication is not commutative.

3   7   –5
2   6     0

–1   4     8

4    7
3  –2
1    5

3     4
7     0
1   –2

2   3   4
5   7   1

–3   7
2   5

3   1
2   4

1   0   0
0   1   0
0   0   1
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3 Demonstrate the associative property of matrix multiplication by calculating

both (AC)F and A(CF).

4 The diagram shows a flag.

(i) Write down the co-ordinates of the five points of the flag.

Hence write down a 2 × 5 matrix to describe the flag.

(ii) The flag is to be transformed using the matrix ( ). 
Use matrix multiplication to find a 2 × 5 matrix to describe the image of

the flag.

(iii) Draw the original flag and its image on one diagram, and describe the

transformation in words.

5 The diagram shows a rectangle.

(i) Write down the co-ordinates of the four points of the rectangle.

Hence write down a 2 × 4 matrix to describe the flag.

(ii) The rectangle is to be transformed using the matrix ( ). 
Use matrix multiplication to find a 2 × 4 matrix to describe the image of

the rectangle.

(iii) Draw the original rectangle and its image on one diagram, and describe

the transformation in words.

6 (i) Choose a shape of your own. Call it S. Write down a matrix to describe S.

(ii) Transform S using the matrix M = ( ) to form the image S′. Draw a

diagram to show S and S′.
(iii) Calculate M2.

(iv) Describe as simply as you can the single transformation represented by M2.

2    1
1   –2

1   0
2   1

–0.6   0.8
0.8   0.6
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7 The matrix S = ( ) contains the numbers of first and second class 

stamps used in an office each day last week. (Top row denotes first class.)

(i) Find a matrix D such that DS gives the total number of stamps used each day.

(ii) Find a matrix N such that SN gives the total number of each type of stamp

used in the week.

(iii) First class stamps cost 28 pence and second class stamps cost 21 pence.

Find a way of calculating the total cost of last week’s stamps using only

matrix multiplication.

8 The stylised map below shows the bus routes in a holiday area. Lines

represent routes that run each way between the resorts. Arrows indicate 

one-way scenic routes. 

M is the partly completed 4 × 4 matrix which shows the number of direct

routes between the various resorts. 

To

A B  C  D

From A
B ( )C
D

(i) Copy and complete M.

(ii) Calculate M2 and explain what information it contains.

(iii) What information would M3 contain?

9 The diagram shows the start of the plaiting process, using three strands a, b

and c.

1   1   2   0

5   0   1   6   2
7   8   4   3   9
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The process has only two steps, repeated alternately:

A: cross the top strand over the middle strand

B: cross the middle strand under the bottom strand.

At Stage 0 the order of the strands is given by s0 = ( ).

(i) Show that pre-multiplying s0 by the matrix A = ( )gives s1, the matrix 

which represents the order of the strands at Stage 1.

(ii) Find the 3 × 3 matrix B which represents the transition from Stage 1 to 

Stage 2.

(iii) Find matrix M = BA and show that Ms0 gives s2, the matrix which

represents the order of the strands at Stage 2.

(iv) Find M2 and hence find the order of the strands at Stage 4.

(v) Calculate M3. What does this tell you?

Composition of transformations

Notation

A single letter, such as T, is often used to represent a transformation. The matrix

T represents the transformation T. (Notice that bold italic T is used for the

transformation and bold upright T for the matrix).

The point P has position vector p. The image of the point P can be denoted by

T(P) or by P′. The image T(P) has position vector p′ = T(p). We find T(p) by

evaluating the matrix product Tp.

Two or more successive transformations

Figure 1.16 shows the effect of two successive transformations on a triangle. The

transformation X represents a reflection in the x axis. X maps the point P to the

point X(P). The transformation Q represents a rotation of 90° anticlockwise

about O. When you apply Q to the image formed by X, the point X(P) is mapped

to the point Q(X(P)). This is abbreviated to QX(P).

0   1   0
1   0   0
0   0   1

a
b
c
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The composite transformation ‘reflection in the x axis followed by rotation of 90°

anticlockwise about O’ is represented by QX. Notice the order: QX means ‘carry

out X, then carry out Q’.

●? Look at figure 1.16 and compare the original triangle with the final image after

both transformations. 

What single transformation is represented by QX?

The transformation X is represented by the matrix X = ( ).
The transformation Q is represented by the matrix Q = ( ).
The product QX = ( )( ) = ( ). 
This is the matrix which represents reflection in the line y = x.

Notice the order in which the matrices were arranged for the multiplication: the

matrix representing the first transformation is on the right and the matrix for the

second transformation is on the left.

In general, the matrix of a composite transformation is found by multiplying the

matrices of the component transformations, in the correct order.

Activity 1.9 shows how this is proved.

ACTIVITY 1.9 The transformations T and S are represented by the matrices T = ( ) and 

S = ( ).

T is applied to the point P with position vector p = ( ). The image of P is P′ with 

position vector p′. S is then applied to the point P′. The image of P′ is P′′ with

position vector p′′.

(i) Find p′ by finding the matrix product Tp.

(ii) Find p′′ by finding the matrix product Sp′.
(iii) Find the matrix product U = ST and show that U(p) is the same as p′′.

x
y

p   r
q   s

a   c
b   d

0   1
1   0

1     0
0   –1

0   –1
1     0

0   –1
1     0

1     0
0   –1
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●? How can you use the idea of successive transformations to justify the associativity

of matrix multiplication: (PQ)R = P(QR)?

● Proving results in trigonometry

Using successive transformations allows us to prove some useful results in

trigonometry.

If you carry out a rotation about the origin through angle α, followed by a

rotation about the origin through angle β, then this is equivalent to a single

rotation through the origin through angle α + β.

ACTIVITY 1.10 (i) Write down the matrix A representing a rotation about the origin through 

angle α, and the matrix B representing a rotation about the origin through 

angle β.

(ii) Find the matrix BA, representing a rotation about the origin through angle α,

followed by a rotation about the origin through angle β.

(iii) Write down the matrix C representing a rotation through the origin through

angle α + β.

(iv) By equating C to BA, write down expressions for sin(α + β) and cos (α + β). 

(v) Explain why BA = AB in this case.

(vi) Write down the matrix D representing a rotation about the origin through

angle –β. 

Use the matrix product AD to find expressions for sin (α – β) and cos (α – β).

EXERCISE 1D Use the following matrix transformations in questions 1 to 4.

The matrix X represents reflection in the x axis.

The matrix Y represents reflection in the y axis.

The matrix Q represents rotation of 90° anticlockwise about the origin.

The matrix R represents rotation of 90° clockwise about the origin.

The matrix S represents rotation of 180° about the origin.

The matrix T represents reflection in the line y = x.

The matrix U represents reflection in the line y = –x.

1 (i) Write down the matrices Y and Q.

(ii) Find the matrix QY and describe the transformation QY as simply as you can.

(iii) Draw diagrams to show the effect of applying Y followed by Q, and check

that the result agrees with your answer to part (ii).

(iv) Find the matrix YQ and describe the transformation YQ as simply as you can.

(v) Draw diagrams to show the effect of applying Q followed by Y, and check

that the result agrees with your answer to part (iv).
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2 (i) Write down the matrices R and T.

(ii) Find the matrix RT and describe the transformation RT as simply as you can.

(iii) Draw diagrams to show the effect of applying T followed by R, and check

that the result agrees with your answer to part (ii).

(iv) Find the matrix TR and describe the transformation TR as simply as you can.

(v) Draw diagrams to show the effect of applying R followed by T, and check

that the result agrees with your answer to part (iv).

3 (i) Write down the matrices X and Y.

(ii) Find the matrix XY and describe the transformation XY as simply as you can.

(iii) Find the matrix YX.

(iv) Explain why XY = YX in this case.

4 (i) Write down the matrices S and U.

(ii) Find the matrix SU and describe the transformation SU as simply as you can.

(iii) Find the matrix US.

(iv) Explain why SU = US in this case.

5 The transformations R and S are represented by the matrices R = ( ) and 

S = ( ).
(i) Find the matrix which represents the transformation RS.

(ii) Find the image of the point (2, –1) under the transformation RS.

6 R1 and R2 are rotations of the plane anticlockwise about the origin through

angles 25° and 40° respectively. The corresponding matrices are R1 and R2.

(i) By considering the effects of the rotations, explain why R1R2 = R2R1.

(ii) Write down R1 and R2 and calculate R1R2.

(iii) What single transformation is represented by R1R2?

7 There are two basic types of four-terminal electrical network, as shown in the

diagram.

(i) In Type A the output voltage V2 and current I2 are related to the input

voltage V1 and current I1 by the simultaneous equations

V2 = V1 –I1R1

I2 = I1.

You can write ( ) = A( ). 

Write down matrix A.

V1
I1

V2
I2

3   0
–2   4

2   –1
1     3
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(ii) In Type B the corresponding simultaneous equations are

V2 = V1

I2 = I1 – .

Write down the matrix B which represents the effect of a Type B network.

(iii) Find the matrix which represents the effect of Type A followed by Type B.

(iv) Is the effect of Type B followed by Type A the same as the effect of

Type A followed by Type B?

In questions 8 to 10 you will need to use the matrix which represents reflection in 

the line y = mx. This can be written as ( ).
8 (i) Find the matrix P which represents reflection in the line y = x, and the

matrix Q which represents reflection in the line y = 3x.

(ii) Use matrix multiplication to find the single transformation equivalent to 

reflection in the line y = x followed by reflection in the line y = 3x.

Describe this transformation fully.

(iii) Use matrix multiplication to find the single transformation equivalent to

reflection in the line y = 3x followed by reflection in the line y = x.

Describe this transformation fully.

9 (i) Find the matrix R which

represents rotation through 30°

anticlockwise about the origin. 

(Use exact values. You may find

the diagram helpful.)

(ii) Find the matrix M which represents reflection in the line y = 3x.

(iii) Calculate MR. 

What single transformation does this matrix represent?

10 The matrix T represents a reflection in the line y = mx. 

Show that T2 = I, and explain geometrically why this is the case.

11 The one-way stretch S, ×5 parallel to the line y = x, can be accomplished by

A rotating the plane clockwise about O through the angle α, where 

tanα = , and then

B doing a one-way stretch, ×5 parallel to the x axis, and then

C rotating the plane anticlockwise about O through the angle α.

(i) Find the matrix for each of transformations A, B and C, 

(ii) Hence find the matrix which represents S.

(iii) Transformation S maps figure F to figure F′. 
Describe the transformation which maps F′ to F, and find its matrix.

1–
2

1–
2

1––
3

1––
3

1––
3

1 – m2 2m
2m m2 – 1

1
––––––
1 + m2

V1––
R2
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Inverse matrices

The transformation Q represents a rotation of 90° anticlockwise about the origin. 

The corresponding matrix Q = ( ).
To undo the effect of Q, you need to carry out a rotation of 90° clockwise about

the origin. This is known as the inverse of Q, and is denoted by Q–1. The matrix 

Q–1 which represents this inverse transformation is ( ).

●? Find the matrix product QQ–1. 

Is Q–1Q equal to QQ–1?

Explain your answers.

ACTIVITY 1.11 Find several pairs of transformations and their inverses, together with the

matrices that represent the transformations.

Find the product of each matrix with its inverse. 

What do you notice?

If the product of two square matrices, M and N, is the identity matrix I = ( ),
then N is the inverse of M. We write N = M–1.

For simple transformation matrices such as the ones you looked at above, it is

easy to find the inverse matrix by considering the inverse transformation.

However, a method is needed to find the inverse of any 2 × 2 matrix. 

ACTIVITY 1.12 The matrix M = ( ). Let M–1 = ( ).

MM–1 = ( )( )= ( ).
Show that 4w + 2x = 1

and 5w + 3x = 0

Solve these equations to find w and x.

Now form and solve two equations in y and z. 

Hence find M–1.

Now generalise this method to find the inverse of the matrix N = ( ). 
Let N–1 = ( ), and again find two equations in w and x, and two equations in y

and z. 

Solve these to find the values of w, x, y and z in terms of a, b, c and d.

w  y
x   z

a   c
b   d

1   0
0   1

w  y
x   z

4   2
5   3

w  y
x   z

4   2
5   3

1   0
0   1

0   1
–1   0

0   –1
1     0
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Hence show that N–1 = ( ), 
where Δ = ad – bc, provided Δ ≠ 0.

The number ad – bc is known as the determinant of the 2 × 2 matrix. If the 

determinant is zero, the matrix ( ) does not have an inverse and is described 

as singular. If the determinant is not zero, then the inverse of the matrix exists,

and the matrix is described as non-singular.

EXAMPLE 1.6 Find the inverses of these matrices, if they exist. 

(i) ( ) (ii) ( )
SOLUTION

(i) The determinant of ( ) = 7 × 4 – 8 × 3 = 28 – 24 = 4.

The inverse of ( )is ( )which may be written as ( ).

(ii) The determinant of ( ) is 2 × 4 – 8 × 1 = 8 – 8 = 0.

So ( ) has no inverse.

As matrix multiplication is not commutative, you may have been wondering if it

matters in which order you multiply the two matrices in Activity 1.12. The next

activity investigates this.

ACTIVITY 1.13 (i) Example 1.6 showed that the inverse of the matrix ( ) is ( ).
Show that ( )( ) = I and ( )( ) = I.

(ii) The matrix M = ( ).
Write down the inverse matrix M–1, and show that MM–1 = M–1M = I.

This is an important result: it means that the inverse of a matrix, if it exists, is

unique. This applies to all square matrices, not just 2 × 2 matrices.

a   c
b   d

7   8
3   4

1   –2
–e-® u-®

1   –2
–e-® u-®

7   8
3   4

1   –2
–e-® u-®

7   8
3   4

2   8
1   4

2   8
1   4

1   –2
–e-® u-®

4   –8
–3     7

1–
4

7   8
3   4

7   8
3   4

2   8
1   4

7   8
3   4

a   c
b   d

d   –c
–b     a

1––Δ
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Notice that the elements 
on the leading diagonal (from 

the top left to bottom right) are
interchanged, and the signs of 

the other two elements
are changed.

Interchange the elements on the 
leading diagonal and change the sign of

the other two elements.



The inverse of a product

●? How would you undo the effect of a rotation followed by a reflection?

How would you write down the inverse of a matrix product MN in terms of 

M–1 and N–1?

Suppose you want to find the inverse of the product AB, where A and B are 

non-singular matrices. This means that you need to find a matrix X such that

X(AB) = I.

X(AB) = I ⇒ XABB–1 = IB–1

⇒ XA = B–1

⇒ XAA–1 = B–1A–1

⇒ X = B–1A–1

Thus (AB)–1 = B–1A–1, where A and B are non-singular matrices of the same

order. To undo two transformations, you must undo the second transformation

before undoing the first. You put your socks on before your shoes, but

presumably you take your shoes off before your socks!

ACTIVITY 1.14 As often happens, it is easier to prove a result when you know the answer! 

Use the associative property of matrix multiplication to show that (AB)(B–1A–1)

simplifies to I and so provide an alternative proof that (AB)–1 = B–1A–1.

EXERCISE 1E 1 Where possible, find the inverses of the following matrices.

(i) ( ) (ii) ( ) (iii) ( )
(iv) ( ) (v) ( ) (vi) ( )
(vii) ( ) (viii) ( ) (ix) ( )

2 The matrix ( ) is singular. 

Find the possible values of k.

3 A = ( ) and B = ( ). 
Calculate the following.

(i) A–1 (ii) B–1 (iii) A–1B–1

(iv) B–1A–1 (v) (BA)–1 (vi) (AB)–1

Comment on your results.

4   3
1   2

5   3
6   4

1 – k 2
–1 4 – k

e   f
g   h

q-́ e-®
w-́ 2

3   –9
–2     6

3   4
5   7

3     1
2   –1

5   6
2   3

4     2
–6   –3

6   –3
–4   –2

4   3
6   5
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4 Triangle T has its vertices at (1, 0), (0, 1) and (–2, 0). 

It is transformed to triangle T′ by means of the matrix M = ( ).
(i) Find the co-ordinates of the vertices of T′, and show T and T′ on one

diagram.

(ii) Find the ratio of the area of T′ to the area of T, and the value of the

determinant of M.

(ii) Find M–1, and verify that this matrix maps the vertices of T′ to the vertices

of T.

5 A 2 × 2 singular matrix M is given as ( ).
Find M2 and give your answer as a multiple of M.

Hence find a formula which gives Mn in terms of M.

6 (i) Two square matrices M and N (of the same size) have inverses M–1 and N–1

respectively. Show that the inverse of MN is N–1M–1.

(ii) A = ( ), B = ( ) and C = AB.

(a) Evaluate the matrix C.

(b) Work out the matrix product A ( ).

(c) By equating the product in part (b) to ( ), find A–1.

(d) Using a similar method, or otherwise, find B–1.

(e) Using your results from parts (c) and (d), find C–1.

[MEI]

Using the determinant of a 2 × 2 matrix

On page 29 the determinant of the 2 × 2 matrix M = ( ) was defined as the 

number ad – bc. It is denoted in several ways: det M, | M |, or | |.
The following activity shows the geometrical significance of determinants.

ACTIVITY 1.15 (i) Figure 1.18 shows the unit square OIPJ and its image OI′P′J′ under a 

transformation T, defined by the matrix T = ( ). 
Find the area of the image and evaluate det T.

3   1
1   2

a   c
b   d

a   c
b   d

1   0   0
0   1   0
0   0   1

1   a   b
0   1   c
0   0   1

1      0   0
3      1   0

–1   –4  1

1   7   4
0   1   2
0   0   1

a   c
b   d

3   1
1   1

E
xercise 1

E

1
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(ii) Transformation R is defined by the matrix R = ( ). 
Apply R to the unit square. 

Find the area of the image and evaluate det R.

(iii) What do you notice?

Ignoring for the moment the sign of the determinant, you will have found that

the determinant is the area scale factor of the transformation.

The sign of the determinant also has significance. If you move anticlockwise

around the original shape, the unit square, you come to the vertices O, I, P, J, in

that order. Moving anticlockwise around the image in figure 1.18 you come to the

vertices in the same order. However, when you apply R to the unit square, the

order of the vertices is reversed. It is this reversal of sense that is indicated by the

negative sign of det R.

In the next activity you will prove that when a general matrix M = ( ) is 

applied to the unit square, then the area of its image is equal to det M.

ACTIVITY 1.16 Figure 1.19 shows the unit square OIPJ and its image OI′P′J′ under the 

transformation M defined by the matrix M = ( ).  
You may assume that det M is positive.

Find the co-ordinates of the image points I′, P′ and J′. 
Hence show that the area of OI′P′J′ is equal to det M.

a   c
b   d

a   c
b   d

3   5
1   1
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J(0, 1)

I(1, 0)

P(1, 1)

Figure 1.18

J(0, 1)

I(1, 0)

y

x

P(1, 1)

O O x

y

J′
I′

P′

Figure 1.19



In Activity 1.16 you should have proved that the determinant gives you the area

scale factor of the area of any transformation of a square using a 2 × 2 matrix. 

●? Explain how this result can be extended to any plane shape.

So ad – bc is the area scale factor of the transformation. Strictly you should say

that det T = ad – bc is the signed scale factor, as it can be negative, signifying that

the sense (clockwise or anticlockwise) has been reversed.

ACTIVITY 1.17 Show that the matrices which represent reflections in the x axis, the y axis, the

line y = x and the line y = –x all have a determinant of –1. 

In each case, draw diagrams to demonstrate that vertices labelled clockwise around

a shape are transformed to vertices labelled anticlockwise around the image.

Matrices with determinant zero

ACTIVITY 1.18 (i) The transformation T is defined by T = ( ). 
Find det T.

(ii) Draw the rectangle with vertices (0, 0), (4, 0), (4, 3), (0, 3). 

Draw the image of this rectangle under T.

(iii) Find some more 2 × 2 matrices with determinant zero. 

Find the image of the rectangle in part (ii) under the transformations defined

by your matrices.

(iv) What do you notice?

If det T = 0 the matrix T is said to be singular, and the transformation

represented by T maps every point in the plane on to a single line which passes

through the origin, as shown in figure 1.20. This is called transforming the plane.

6   4
3   2

U
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Each point on the image line P′Q′ is the image of infinitely many points. All the

points which map to P′ fall on a straight line, labelled AB in figure 1.20, and every

point on AB maps to P′. Similarly, I′ is the image of all points on a line through I

parallel to AB and each point on a line through Q parallel to AB maps to Q′.

●? What happens when you map any shape using the zero matrix ( )?
How is the plane transformed?

EXAMPLE 1.7 The plane is transformed by means of the matrix M = ( ).
(i) Show that det M = 0.

(ii) Show that the whole plane is mapped to a straight line, and find the equation

of this line.

(iii) Find the equation of the line of points that map to (6, 3).

SOLUTION

(i) det M = (4 × –3) – (–6 × 2) = –12 + 12 = 0

(ii) ( )( ) = ( )
4x – 6y = x′{2x – 3y = y′

x′ = 2(2x – 3y) = 2y′

The plane is mapped to the line x = 2y.

(iii) ( )( ) = ( )
4x – 6y = 6 { 2x – 3y = 3 

Points on the line 2x – 3y = 3 map to the point (6, 3).

ACTIVITY 1.19 The plane is transformed using the matrix ( ), where ad – bc = 0. 

Prove that the general point P(x, y) maps to P′ on the line bx – ay = 0.

a   c
b   d

6
3

x
y

4   –6
2   –3

x′
y′

x
y

4   –6
2   –3

4   –6
2   –3

0   0
0   0
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EXERCISE 1F 1 Find the value of the determinant of each of the following matrices and decide 
whether each matrix is singular or non-singular.

(i) ( ) (ii) ( ) (iii) ( ) (iv) ( )
2 M = ( ) and N = ( ).

(i) Find the determinants of M and N.

(ii) Find MN and det (MN). What do you notice?

(iii) By considering the geometrical significance of the determinant, explain

why det (MN) = det M × det N.

3 The two-way stretch with matrix ( ) preserves area (i.e. the area of the 

image is equal to the area of the original shape). 

What is the relationship connecting a and d?

4 A shear moves each point parallel to the x axis by a distance k times its distance

from the x axis.

Find the matrix for this transformation and hence show that whatever the

value of k, the shear preserves area.

5 The matrix M = ( ) defines a transformation in the (x, y) plane.

A triangle S, with area 5 square units, is transformed by M into triangle T.

(i) Find the area of triangle T.

(ii) Find the matrix which transforms triangle T into triangle S.

Triangle U is obtained by rotating triangle S through 135° anticlockwise about

the origin.

(iii) Find the matrix which transforms triangle S into triangle U.

(iv) Find the matrix which transforms triangle T into triangle U.

[MEI, part]

6 The plane is transformed by means of the matrix M = ( ).
(i) Show that det M = 0, and that the whole plane is mapped on to the line 

x – 2y = 0.

(ii) The point P(x, y) is mapped to P′(4, 2). 

Use the equation p′ = Mp to show that P could be anywhere on the line 

x + 2y = 2.

(iii) Find the equation of the line of points that map to (10, 5).

7 A matrix T maps all points on the line x + 2y = 1 to the point (1, 3).

(i) Find the matrix T and show that its determinant is zero.

(ii) Show that T maps all points on the plane on to the line y = 3x.

(iii) Find the co-ordinates of the point that all points on the line x + 2y = 3 are

mapped to.

2   4
1   2

7   –3
–4     6

a   0
0 d

3   2
–2   1

5   3
4   2

1   –2
2     3

5   3
1 e-†

4     8
–1   –2

6   4
2   3

E
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8 The point P is mapped to P′ on the line 3y = x, so that PP′ is parallel to y = 3x.

(i) Find the equation of the line parallel to y = 3x passing through the point P

with co-ordinates (s, t).

(ii) Find the co-ordinates of P′, the point where this line meets the line 3y = x.

(iii) Find the matrix of the transformation which maps P to P′, and show that

the determinant of this matrix is zero.

9 A shear moves each point parallel to the line y = mx. 

Each point is moved k times its distance from the line y = mx. 

(Points to the right of the line are moved upwards, points to the left of the line

are moved downwards).

(i) Find the images of the points I(1, 0) and J(0, 1).

(ii) Hence write down the matrix which represents the shear.

(iii) Show that whatever the value of m, the shear preserves area.

Matrices and simultaneous equations

You are already able to solve a pair of simultaneous linear equations such as

{
by the method of elimination.

An alternative method, which can be used to solve any number of simultaneous

linear equations, involves the use of matrices.

The equations above can be written as a single matrix equation

( )( ) = ( ).
The inverse of the matrix ( ) is ( ).

( )( )( ) = ( )( )
( ) = ( ) = ( )

The solution is x = 5, y = –3.

The equation

( )( ) = ( )
has the form Mp = p′, where M and p′ are known and you are trying to find p.

This is equivalent to finding the co-ordinates of the unknown point P which is

transformed on to the known point P′ by the given matrix M.

9
5

x
y

3   2
4   5

5
–3

35
–21

1–
7

x
y

9
5

5   –2
–4     3

1–
7

x
y

3   2
4   5

5   –2
–4     3

1–
7

5   –2
–4     3

1–
7

3   2
4   5

9
5

x
y

3   2
4   5

3x + 2y = 9
4x + 5y = 5
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Pre-multiply both sides
of the matrix equation by

( ).5   –2
–4     3

1–
7

As M–1Mp = p, 
the left-hand side 

simplifies to ( ).x
y



An alternative geometrical interpretation of solving a pair of simultaneous equations,

which may already be familiar to you, is to think of the two equations as the equations

of two lines in a plane. You are looking for any points which lie on both lines.

Whichever geometrical interpretation you use, there are three possible alternatives.

Case 1

The lines cross at a single point, as shown in figure 1.21. This is the case when 

det M ≠ 0, so the inverse matrix M–1 exists and there is a unique position for P, as

shown in figure 1.22. 

Both interpretations show that there is a unique solution to the equations.

Case 2

The lines are distinct parallel lines, as shown in figure 1.23. In this case det M = 0,

so the inverse matrix M–1 does not exist, and the transformation maps all points

on to a single line l through the origin. In this case P′ is not on l, so P′ is not the

image of any point (see figure 1.24). 

Both interpretations show that the equations have no solution. We say that the

equations are inconsistent. 

Case 3

The lines are coincident lines, i.e. they are the same line, as shown in figure 1.25.

In this case det M = 0 again, so the inverse matrix M–1 does not exist and the

transformation maps all points on to a single line l through the origin. In this

case, P′ is on l, so there are infinitely many positions for P, all the points on a

particular line (see figure 1.26). 
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Figure 1.23

l
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Both interpretations show that the equations have infinitely many solutions,

which may be expressed in terms of a single parameter (see Example 1.8 part (iii)).

EXAMPLE 1.8 Find, if possible, the solution of the equations {
(i) when m = 1 and k = 1

(ii) when m = –6 and k = 3

(iii) when m = –6 and k = 8.

SOLUTION

The simultaneous equations may be written as the following matrix equation.

( )( ) = ( )
(i) When m = 1, | | =14, so the inverse matrix exists and is equal to ( ).

( ) =  ( )( ) = ( ) = ( )
There is a unique solution: x = , y = –1.

(ii) When m = –6, | | = 0, so the inverse matrix does not exist.

When k = 3, the equations are { .

These equations are inconsistent as 2x – 3y cannot be both 4 and . 

There are no solutions.

(iii) As for part (ii), the inverse matrix does not exist.

When k = 8, the equations are { .

Both equations reduce to 2x – 3y = 4. 

There are infinitely many solutions, which can be given in terms of a 

parameter λ as x = λ, y = – .4–
3

2λ––
3

2x – 3y = 4
4x – 6y = 8

3–
2

2x – 3y = 4
4x – 6y = 3

2   –3
4   –6

1–
2

q-∑

–1
7

–14
1––

14
4
1

1   3
–4   2

1––
14

x
y

1   3
–4   2

1––
14

2   –3
4     1

4
k

x
y

2   –3
4  m

2x – 3y = 4
4x + my = k
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The strength of the matrix method for solving simultaneous equations is that it

can be used for any number of equations. Of course, to solve a set of n

simultaneous equations in n unknowns, you do need to be able to find the

inverse of an n × n matrix. At this stage you will only be dealing with the case

where n = 2 unless you are given help with finding the inverse of a larger matrix,

such as 3 × 3.

ACTIVITY 1.20 Three simultaneous equations

(i) Use the matrix facility on your calculator to find the inverse of the 

matrix ( ).

Hence find the solution of the equations { .

(ii) What happens if you try to solve the equations { using the 

matrix facility on your calculator?

Why do you think this is?

Try to solve the equations algebraically. What happens?

(iii) Repeat part (ii) for the equations { .

●? ● Geometrical interpretation of three simultaneous equations

What is the geometrical interpretation of each of the three situations in 

Activity 1.20?

EXERCISE 1G 1 (i) Find the inverse of the matrix ( ).

(ii) Hence solve the equation ( )( ) = ( ).
2 Use matrices to solve the following pairs of simultaneous equations.

(i) { (ii) {
(iii) { (iv) {3x – 2y = 9

x – 4y = –2
x + 3y = 11
2x – y = 1

3x + 2y = 4
x – 2y = 4

3x – y = 2
2x + 3y = 5

1
–3

x
y

2   3
–1   1

2   3
–1   1

x + 3y – 2z = 7
2x – 2y + z = 3

3x + y – z = 12

x + 3y – 2z = 7
2x – 2y + z = 3

3x + y – z = 10

3x + 2y + z = 5
x + 4y – 2z = 3

2x + y + z = 3

3   2     1
1   4   –2
2   1     1
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3 For each of the following pairs of equations, decide whether the equations are

consistent or inconsistent. 

If they are consistent, solve them, in terms of a parameter if necessary. 

In each case, describe the configuration of the corresponding pair of lines.

(i) { (ii) {
(iii) { (iv) {

4 Find the two values of k for which the equations { do not have a 

unique solution. Where possible, find the solution set for the equations.

5 (i) Find AB, where A = ( ) and B = ( ).

Hence write down the inverse matrix A–1, stating a necessary condition on

k for this inverse to exist.

(ii) Using the result from part (i), or otherwise, solve the equation

( )( ) = ( )
in each of these cases.

(a) k = 8, giving x, y and z in terms of m

(b) k = 1 and m = 4

(c) k = 1 and m = 2

[MEI, part, adapted]

6 Matrices A and B are given by

A = ( ), B = ( )(where a ≠ – and k ≠ 3).

(i) Find the matrix AB.

(ii) Show that there is a relationship between a and k for which AB is a scalar

multiple of the identity matrix I.

(iii) Deduce that A–1 = ( ) and find B–1 in terms of k.

(iv) Given that ( )( ) = ( ), express each of x, y and z in terms of a.

(v) Find (AB)–1 in terms of a and k.

[MEI]

2
–2
3

x
y
z

1   –2     0
0     2   –2
a 0 3

6       6     4
–2a 3     2
–2a –2a 2

1–––––
6 + 4a

3–
2

6   6   4
k 3   2
k   k 2

1   –2     0
0     2   –2
a 0     3  

28
0
m

x
y
z 

5   –2     k
3   –4   –5

–2     3     4  

–1    3k + 8    4k + 10
–2   2k + 20   3k + 25
1       –11         –14

5   –2     k
3   –4   –5

–2     3     4  

2x + ky = 3
kx + 8y = 6

8x – 4y = 11
y = 2x – 4

6x – 3y = 12
2x – y = 4

3x + 6y = 12
2x + 4y = 15

3x + 5y = 17
2x + 4y = 11
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7 You are given the matrices

P = ( ) and Q = ( ).

(i) Calculate the matrix product PQ.

(ii) For the case k = 3, write down the inverse matrix Q–1 and hence solve the

following equation.

Q( ) = ( )
(iii) For the case k = 5, you are given that Q has no inverse. Solve the equation

Q( ) = ( ),

giving x, y and z in terms of a parameter t.

[MEI, part]

Invariant points

●? In a reflection, which points map to themselves?

In a rotation, are there any points which map to themselves?

Points which map to themselves under a transformation are called invariant

points.

The product ( )( ) = ( ). This means that the transformation ( ) 
maps the point (2, –2) to itself. This is an example of an invariant point.

●? Explain why the origin is always an invariant point in any transformation that

can be represented by a matrix.

6   5
2   3

2   
–2 

2
–2

6   5
2   3

19
4
5

x
y
z

19
4
5

x
y
z

–2   1    k
3   5   –1
5   8   –2

–2     26   –16
1   –11       7

–1     21   –13
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EXAMPLE 1.9 Find the invariant points under the transformation given by the matrix ( ).
SOLUTION

Suppose ( ) maps to itself. Then

( )( ) = ( ) ⇔ ( ) = ( )
⇔ 2x – y = x and x = y
⇔ x = y.

Thus all points on the line y = x (and only points on this line) map on to

themselves. This is a line of invariant points. The invariant points can be

expressed in terms of a parameter as (λ, λ).

Notice that in Example 1.9, the matrix equation ( )( ) = ( ) led to two

equations which turned out to be equivalent.

Clearly any matrix equation of this form will lead to two equations of the form 
ax + by = 0, which represent straight lines through the origin. Either these two
equations are equivalent, representing the same straight line, which means that
all the invariant points lie on this line, or they are not, in which case the origin is
the only point which satisfies both equations, and so is the only invariant point.

● Invariant lines

A line AB is known as an invariant line under a transformation T if the image of
each point on AB is also on AB. It is important to note that it is not necessary for
points on AB to map on to themselves (as in Example 1.9) but merely that each
point on AB maps to a point on AB.

Sometimes it is easy to spot which lines are invariant, for example, in a reflection,
as well as the mirror line being invariant (because it is a line of invariant points),
each line perpendicular to the mirror line is invariant, as shown in figure 1.27.

x
y

x
y

2   –1
1     0

x
y

2x – y
x

x
y

x
y

2   –1
1     0

x
y

2   –1
1     0
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●? What lines, if any, are invariant in the following transformations?

(i) Enlargement, centre the origin

(ii) Rotation through 180° about the origin

(iii) Rotation through 90° about the origin

(iv) Reflection in the line y = x

EXERCISE 1H 1 Find the invariant points for the transformations with the following matrices.

(i) ( ) (ii) ( ) (iii) ( )
–

(iv)  ( ) (v) ( ) (vi) ( )
–

2 The transformation T maps ( ) to ( )( ).  

Show that invariant points other than the origin exist if det T = a + d – 1.

3 The matrix (                     ) represents reflection in the line y = mx.

Prove that the line y = mx is a line of invariant points.

4 (i) M is a reflection of the plane such that the point (x′, y′) is the image of 

the point (x, y), where

( ) = ( )( ).

Find a point, other than the origin, that is invariant under this reflection. 

Hence find the equation of the mirror line.

(ii) T is a translation of the plane by the vector ( ). 

The point (X, Y) is the image of the point (x, y) under the combined

transformation TM (that is M followed by T) where 

( ) = ( )( ).
(a) Show that if a = –4 and b = 2 then (0, 5) is an invariant point of TM.

(b) Show that if a = 2 and b = 1 then TM has no invariant point.

(c) Find a relation between a and b that must be satisfied if TM is to have

any invariant points.

[SMP]

x
y
1

–0.6   0.8   a
0.8   0.6   b

0      0 1

X
Y
1

a
b

x
y

–0.6   0.8
0.8   0.6

x′
y′

m2 – 1–––––
1 + m2

2m–––––
1 + m2

2m–––––
1 + m2

1 – m2
–––––
1 + m2

x
y

a   c
b   d

x
y

1––
2

1––
2

7   –4
3   –1

4   1
6   3

1––
2

1––
2

0.6     0.8
0.8   –0.6

3   4
1   2

0   –1
1     2
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INVESTIGATIONS

1 Investigate the sequence of matrices I, M, M 2, M 3, ... where M = ( ).
2 Mendel’s genetic theory states that offspring inherit characteristics from their

parents through their genes. Each characteristic is controlled by a pair of

genes, which may be of two types: G or g. The three possible combinations are

GG known as homozygous dominant, and denoted by D

Gg or gG known as heterozygous, and denoted by H

gg known as homozygous recessive, and denoted by R.

Offspring inherit one gene from each parent, randomly and independently. 

In a controlled study of a population of fruit flies, the only females allowed to

mate are those known to be heterozygous.

(i) The unfinished matrix shows the probability that the offspring has

combination D, H or R given the combination of genes of the male parent. 

Copy and complete the matrix M containing this information.

(ii) Initially the proportions of the D, H and R combinations in the 

population are given by x0 = ( ). 

Show that x1 = Mx0 gives the proportions in the next generation.

(iii) Investigate what happens if the study continues over many generations.
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Male parent
D   H  R

Offspring D

H ( )
R

q-∑ q-® 0

...  ...  ...

...  ...  ...



KEY POINTS

1 The matrix M = ( ) represents the transformation which maps the point with

position vector ( ) to the point with position vector ( ), where { .

2 The image of ( ) is the first column of M, the image of ( ) is the second

column of M.

3 Matrix mulitplication

( )( ) =        ( )

4 Matrix multiplication is not commutative: MN ≠ NM for all M, N.

5 Matrix multiplication is associative: N(ML) = (NM)L.

6 The matrix I = ( ) is known as the identity matrix.

The matrix ( ) is known as the zero matrix.

7 The composite transformation ‘M followed by N’ is represented by the 

matrix product NM.

8 The determinant of the matrix M = ( ) is ad – bc. 

It is denoted by | M | , det M or | |. 
The determinant of the matrix M gives the area scale factor of the associated

transformation M.

9 The inverse of M = ( ) is M–1 = ( ), provided ad – bc ≠ 0.

MM–1 = M–1M = I.

10 When solving n simultaneous equations in n unknowns, the equations can 

be written as a matrix equation.

M( ) = ( )
If det M ≠ 0, there is a unique solution which can be found by 

pre-multiplying by the inverse matrix M–1. 

If det M = 0, then there is either no solution or infinitely many solutions.

11 The point P is known as an invariant point under T if the image of P under 

T is P.

a1
a2
...
an

x1
x2
...
xn

d   –c
–b     a

1––––––
ad – bc

a   c
b   d

a   c
b   d

a   c
b   d

0   0
0   0

1   0
0   1

pa + rb   pc + rd
qa + sb   qc + sd

a   c
b d

p   r
q   s

0
1

1
0

x′= ax + cy
y′ = bx + dy

x′
y′

x
y

a c
b d
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Row from left matrix with
column from right matrix.
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Complex numbers

…that wonder of analysis, that portent of the ideal world, that

amphibian between being and not-being, which we call the imaginary

root of negative unity. 

Leibniz, 1702

The growth of the number system

The number system we use today has taken thousands of years to develop. In

primitive societies all that are needed are the counting numbers, 1, 2, 3,… (or even

just the first few of these). 

The concept of a fraction was first recorded in a systematic way in an Egyptian

papyrus of about 1650 BC. By 500 BC the Greeks had developed ways of

calculating with whole numbers and their ratios (which accounts for calling

fractions rational numbers). The followers of Pythagoras believed that everything

in geometry and in applications of mathematics could be explained in terms of

rational numbers.

It came as a great shock, therefore, when one of them proved that 2 was not a

rational number. However, Greek thinkers gradually came to terms with the

existence of such irrational numbers, and by 370 BC Eudoxus had devised a very

careful theory of proportion which included both rational and irrational numbers.

It took about another thousand years for the next major development, when the

Hindu mathematician Brahmagupta (in about AD 630) described negative

numbers and gave the rules for dealing with negative signs. Surprisingly, the first

use of a symbol for zero came even later, in AD 876. This was the final element

needed to complete the set of real numbers, consisting of positive and negative

rational and irrational numbers and zero. 

Figure 2.1 shows the relationships between the different types of numbers.

2



ACTIVITY 2.1 Copy figure 2.1 and write the following numbers in the correct positions.

3 π –1 –1.4142 – 2

Draw also a real number line and mark the same numbers on it.

The number system expanded in this way because people wanted to increase the

range of problems they could tackle. This can be illustrated in terms of the sorts

of equation that can be solved at each stage, although of course the standard

algebraic way of writing these is relatively modern.

ACTIVITY 2.2 For each of these equations, make up a simple problem that would lead to the

equation and say what sort of number is needed to solve the equation.

(i) x + 7 = 10 (ii) 7x = 10

(iii) x2 = 10 (iv) x + 10 = 7

(v) x2 + 7x = 0 (vi) x2 + 10 = 0

You will have hit a snag with equation (vi). Since the square of every real number

is positive or zero, there is no real number with a square of –10. This is a simple

example of a quadratic equation with no real roots. The existence of such

equations was recognised and accepted for hundreds of years, just as the Greeks

had accepted that x + 10 = 7 had no solution.

Then two 16th century Italians, Tartaglia and Cardan, found methods of solving

cubic and quartic (fourth degree) equations which forced mathematicians to take

seriously the square roots of negative numbers. This required a further extension

of the number system, to produce what are called complex numbers.

Complex numbers were regarded with great suspicion for many years. Descartes

called them ‘imaginary’, Newton called them ‘impossible’, and Leibniz’s

mystification has already been quoted. But complex numbers turned out to be

very useful, and had become accepted as an essential tool by the time Gauss first

gave them a firm logical basis in 1831.

355–––
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Negative integersPositive integers

Rational numbers

zero

Irrational numbers

Real numbers

Figure 2.1
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Working with complex numbers

Faced with the problem of wanting the square root of a negative number, we

make the following Bold Hypothesis.

The real number system can be extended by including a new number,
denoted by j, which combines with itself and the real numbers according to
the usual laws of algebra, but which has the additional property that j2 = –1.

The original notation for j was ι, the Greek letter iota. i is also commonly used

instead of j.

The first thing to note is that we do not need further symbols for other square

roots. For example, since –196 = 196 × (–1) = 142 × j2, we see that –196 has two

square roots, ±14j. The following example uses this idea to solve a quadratic

equation with no real roots.

EXAMPLE 2.1 Solve the equation z2 – 6z + 58 = 0, and check the roots.

(We use the letter z for the variable here because we want to keep x and y to stand

for real numbers.)

SOLUTION

Using the quadratic formula:

6 ± 62 – 4 × 58
z = ––––––––––––––––

2

6 ± –196
= ––––––––––

2

6 ± 14j
= ––––––

2

= 3 ± 7j

To check:

z = 3 + 7j ⇒ z2 – 6z + 58 = (3 + 7j)2 – 6(3 + 7j) + 58

= 9 + 42j + 49j2 – 18 – 42j + 58 

= 9 + 42j – 49 – 18 – 42j + 58

= 0

ACTIVITY 2.3 Check the other root, z = 3 – 7j.

Notice that here 0
means 0 + 0j.

j2 = –1
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A number z of the form x + yj, where x and y are real, is called a complex number.

x is called the real part of the complex number, denoted by Re(z), and y is called

the imaginary part, denoted by Im(z). So if, for example, z = 3 – 7j then Re(z) = 3

and Im(z) = –7. Notice in particular that the imaginary part is real!

In Example 2.1 you did some simple calculations with complex numbers. The

general methods for addition, subtraction and multiplication are similarly

straightforward.

Addition: add the real parts and add the imaginary parts.

(x + yj) + (u + vj) = (x + u) + (y + v)j

Subtraction: subtract the real parts and subtract the imaginary parts.

(x + yj) – (u + vj) = (x – u) + (y – v)j

Multiplication: multiply out the brackets in the usual way and simplify,

remembering that j2 = –1.

(x + yj)(u + vj) = xu + xvj + yuj + yvj2

= (xu – yv) + (xv + yu)j

Division of complex numbers is dealt with later in the chapter.

●? What are the values of j3, j4, j5?

Explain how you would work out the value of jn for any positive integer value of n.

Complex conjugates

The complex number x – yj is called the complex conjugate, or just the conjugate,

of x + yj. The complex conjugate of z is denoted by z*. Notice from Example 2.1

that the two solutions of a quadratic equation with no real solutions are

complex conjugates.

ACTIVITY 2.4 (i) Let z = 3 + 5j and w = 1 – 2j.

Find the following. 

(a) z + z* (b) w + w* (c) zz* (d) ww*

What do you notice about your answers?

(ii) Let z = x + yj. 

Show that z + z* and zz* are real for any values of x and y.
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EXERCISE 2A 1 Express the following in the form x + yj.

(i) (8 + 6j) + (6 + 4j) (ii) (9 – 3j) + (–4 + 5j)

(iii) (2 + 7j) – (5 + 3j) (iv) (5 – j) – (6 – 2j)

(v) 3(4 + 6j) + 9(1 – 2j) (vi) 3j(7 – 4j)

(vii) (9 + 2j)(1 + 3j) (viii) (4 – j)(3 + 2j)

(ix) (7 + 3j)2 (x) (8 + 6j)(8 – 6j)

(xi) (1 + 2j)(3 – 4j)(5 + 6j) (xii) (3 + 2j)3

2 Solve each of the following equations, and check the roots in each case.

(i) z2 + 2z + 2 = 0 (ii) z2 – 2z + 5 = 0

(iii) z2 – 4z + 13 = 0 (iv) z2 + 6z + 34 = 0

(v) 4z2 – 4z + 17 = 0 (vi) z2 + 4z + 6 = 0

3 Given that z = 2 + 3j and w = 6 – 4j, find the following.

(i) Re(z) (ii) Im(w)

(iii) z* (iv) w*

(v) z* + w* (vi) z* – w*

(vii) Im(z + z*) (viii) Re(w – w*)

(ix) zz* – ww* (x) (z3)*

(xi) (z*)3 (xii) zw* – z*w

4 Let z = x + yj.

Show that (z*)* = z.

5 Let z1 = x1 + y1j and z2 = x2 + y2j.

Show that (z1 + z2)* = z1* + z2*.

Division of complex numbers

Before tackling the slightly complicated problem of dividing by a complex
number, you need to know what is meant by equality of complex numbers.

Two complex numbers z = x + yj and w = u + vj are equal if both x = u and y = v.
If u ≠ x or v ≠ y, or both, then z and w are not equal.

You may feel that this is making a fuss about something which is obvious.
However, think about the similar question of the equality of rational numbers. 

The rational numbers and are equal if x = u and y = v.

●? Is it possible for the rational numbers and to be equal if u ≠ x and v ≠ y?

So for two complex numbers to be equal, the real parts must be equal and the
imaginary parts must be equal. When we use this result we say that we are
equating real and imaginary parts.

Equating real and imaginary parts is a very useful method which often yields 
‘two for the price of one’ when working with complex numbers. The following
example illustrates this.

u
–
v

x
–
y

u
–
v

x
–
y
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EXAMPLE 2.2 Find real numbers p and q such that p + qj = .

SOLUTION

You need to find real numbers p and q such that

(p + qj)(3 + 5j) = 1.

Expanding gives

3p – 5q + (5p + 3q)j = 1.

Equating real and imaginary parts gives

Real: 3p – 5q = 1

Imaginary: 5p + 3q = 0.

These simultaneous equations give p = , q = – and so

= – j.

ACTIVITY 2.5 By writing = p + qj, show that = .

This result shows that there is an easier way to find the reciprocal of a complex

number. First, notice that 

(x + yj)(x – yj) = x2 –  y2j2

= x2 + y2

which is real.

So to find the reciprocal of a complex number you multiply numerator and

denominator by the complex conjugate of the denominator.

EXAMPLE 2.3 Find the real and imaginary parts of .

SOLUTION

Multiply numerator and denominator by 5 – 2j.

= 

= 

= 

so the real part is , and the imaginary part is – .2––
29

5––
29

5 – 2j
–––––

29

5 – 2j
–––––
25 + 4

5 – 2j
–––––––––––––
(5 + 2j)(5 – 2j)

1–––––
5 + 2j

1–––––
5 + 2j

x – yj
––––––
x2 + y2

1–––––
x + y j

1–––––
x + y j

5––
34

3––
34

1–––––
3 + 5j

5––
34

3––
34

1–––––
3 + 5j

5 – 2j is the conjugate of
the denominator, 5 + 2j.



C
o

m
p

le
x 

n
u

m
b

er
s

2

52

Note

You may have noticed that this process is very similar to the process of rationalising

a denominator, which you met in C1. To make the denominator of       rational

you had to multiply the numerator and denominator by 3 – 2.

Similarly, division of complex numbers is carried out by multiplying both

numerator and denominator by the conjugate of the denominator, as in the 

next example.

EXAMPLE 2.4 Express as a complex number in the form x + yj.

SOLUTION

= ×

= 

= 

= – j

The corresponding general result is obtained in the same way:

= = + j

unless u = v = 0, in which case the division is impossible, not surprisingly, since

the denominator is then zero.

●? What are the values of , and ? 

Explain how you would work out the value of for any positive integer value of n.

● The collapse of a Bold Hypothesis

You have just avoided a mathematical inconvenience (that –1 has no real square

root) by introducing a new mathematical object, j, which has the property that

you want: j2 = –1. 

What happens if you try the same approach to get rid of the equally inconvenient

ban on dividing by zero? The problem here is that there is no real number equal

to 1 ÷ 0. So try making the Bold Hypothesis that you can introduce a new

mathematical object which equals 1 ÷ 0 but otherwise behaves like a real number.

Denote this new object by ∞.

1––
jn

1––
j3

1––
j2

1–
j

yu – xv
––––––
u2 + v2

xu + yv
––––––
u2 + v2

(x + yj)(u – vj)
–––––––––––––
(u + vj)(u – vj)

x + yj
–––––
u + vj

35––
13

6––
13

6 – 35j–––––
13

18 – 27j – 8j + 12j2––––––––––––––––
22 + 32

2 – 3j–––––
2 – 3j

9 – 4j–––––
2 + 3j

9 – 4j–––––
2 + 3j

9 – 4j–––––
2 + 3j

1––––––
3 +    2

!
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Then 1 ÷ 0 = ∞, and so 1 = 0 × ∞.

But then you soon meet a contradiction:

2 × 0 = 3 × 0
⇒ (2 × 0) × ∞ = (3 × 0) × ∞
⇒ 2 × (0 × ∞) = 3 × (0 × ∞)
⇒ 2 × 1 = 3 × 1
⇒ 2 = 3 which is impossible.

So this Bold Hypothesis quickly leads to trouble. How can you be sure that the

same will never happen with complex numbers? For the moment you will just

have to take on trust that there is an answer, and that all is well.

EXERCISE 2B 1 Express these complex numbers in the form x + yj.

(i) (ii)

(iii) (iv)

(v) (vi)

(vii) (viii)

(ix) (x)

2 Find real numbers a and b with a > 0 such that

(i) (a + bj)2 = 21 + 20j (ii) (a + bj)2 = –40 – 42j

(iii) (a + bj)2 = –5 – 12j (iv) (a + bj)2 = –9 + 40j

(v) (a + bj)2 = 1 – 1.875j (vi) (a + bj)2 = j.

3 Find real numbers a and b such that

+ = 1 – j.

4 Solve these equations.

(i) (1 + j)z = 3 + j

(ii) (3 – 4j)(z – 1) = 10 – 5j

(iii) (2 + j)(z – 7 + 3j) = 15 – 10j 

(iv) (3 + 5j)(z + 2 – 5j) = 6 + 3j

5 Find all the complex numbers z for which z2 = 2z*.

6 For z = x + yj, find + in terms of x and y.

7 Show that

(i) Re(z) = (ii) Im(z) = .
z – z*
–––––

2j
z + z*
–––––

2

1
––
z*

1
–
z

b
–––––
1 + 2j

a
––––
3 + j

12 – 8j
–––––––
(2 + 2j)2

6 + j
–––––
2 – 5j

5 – 3j
–––––
4 + 3j

2 – 3j
–––––
3 + 2j

47 – 23j
–––––––

6 + j
3 + 2j
–––––
1 + j

7 + 5j
–––––
6 – 2j

5j
–––––
6 – 2j

1––––
6 – j

1––––
3 + j



8 (i) Expand and simplify (a + bj)3. 

(ii) Deduce that if (a + bj)3 is real then either b = 0 or b2 = 3a2.

(iii) Hence find all the complex numbers z for which z3 = 1.

9 (i) Expand and simplify (z – α)(z – β). 

Deduce that the quadratic equation with roots α and β is

z2 – (α + β)z + αβ = 0, 

that is: 

z2 – (sum of roots)z + product of roots = 0.

(ii) Using the result from part (i), find quadratic equations in the form 

az2 + bz + c = 0 with the following roots.

(a) 7 + 4j, 7 – 4j (b) , –

(c) –2 + 8j, –2 – 8j (d) 2 + j, 3 + 2j

10 Find an example to show that non-real numbers p and q may be found such

that the equation z2 + pz + q = 0 has a real root. 

Is it possible for the equation to have two real roots if p and q are non-real?

11 (i) Evaluate the following. 

(a) (1 + j)2

(b) (1 + j)4

(c) (1 + j)4k, where k is a positive integer

(ii) By considering the binomial expansion of (1 + j)4k, prove that

4kC0 – 4kC2 + 4kC4 – 4kC6 + ... + 4kC4k = (–4)k.

(iii) Check this numerically in the following cases.

(a) k = 3 (b) k = 4

(iv) Investigate in a similar way the value of

4k + 2C1 – 4k + 2C3 + 4k + 2C5 – 4k + 2C7 + ... + 4k + 2C4k + 1. 

● The remaining questions relate to enrichment material.

12 The complex numbers z and w satisfy the following simultaneous equations.

z + jw = 13

3z – 4w = 2j

Find z and w, giving your answers in the form a + bj.

[MEI, part]

13 Given that z = 2 + 3j is a solution of the equation

z2 + (a – j)z + 16 + bj = 0

where a and b are real, find a, b and the other solution of the equation.

5j––
3

5j––
3
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Representing complex numbers geometrically

Since each complex number x + yj

can be defined by the ordered pair of

real numbers (x, y), it is natural to

represent x + yj by the point with

cartesian co-ordinates (x, y).

For example, in figure 2.2,

2 + 3j is represented by (2, 3)

–5 – 4j is represented by (–5, –4)

2j is represented by (0, 2)

7 is represented by (7, 0).

All real numbers are represented by points on the x axis, which is therefore called

the real axis. Pure imaginary numbers (of the form 0 + yj) give points on the 

y axis, which is called the imaginary axis. It is useful to label these Re and Im

respectively. This geometrical illustration of complex numbers is called the

complex plane or the Argand diagram after Jean-Robert Argand (1768–1822), 

a self-taught Swiss book-keeper who published an account of it in 1806.

ACTIVITY 2.6 (i) Copy figure 2.2. 

For each of the four given points z mark also the point –z. 

Describe the geometrical transformation which maps the point representing 

z to the point representing –z.

(ii) For each of the points z mark the point z*, the complex conjugate of z.

Describe the geometrical transformation which maps the point representing

z to the point representing z*.

You will have seen in this activity that the points representing z and –z have half-

turn symmetry about the origin, and that the points representing z and z* are

reflections of each other in the real axis.

●? How would you describe points that are reflections of each other in the

imaginary axis?

Representing the sum and difference of complex numbers

Several mathematicians before Argand had used the complex plane

representation. In particular, a Norwegian surveyor, Caspar Wessel (1745–1818),

wrote a paper in 1797 (largely ignored until it was republished in French a

century later) in which the complex number x + yj is represented by the position 

vector ( ), shown in figure 2.3.
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2j

4j

3j

Re

Im

Figure 2.2



The advantage of this is that the addition of complex numbers can then be shown

by the addition of the corresponding vectors.

+ = 

In an Argand diagram the position vectors

representing z1 and z2 form two sides of a

parallelogram, the diagonal of which is the vector 

z1 + z2 (see figure 2.4).

You can also represent z by any other directed line 

segment with components ( ), not anchored at the 

origin as a position vector. Then addition can be

shown as a triangle of vectors (see figure 2.5).

If you draw the other diagonal of the parallelogram,

and let it represent the complex number w

(see figure 2.6), then

z2 + w = z1 ⇒ w = z1 – z2.

This gives a useful illustration of subtraction: the

complex number z1 – z2 is represented by the vector

from the point representing z2 to the point

representing z1, as shown in figure 2.7. Notice the

order of the points: the vector z1 – z2 starts at the

point z2 and goes to the point z1.

x
y

x1 + x2( )y1 + y2

x2( )y2

x1( )y1
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Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7
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ACTIVITY 2.7 (i) Draw a diagram to illustrate z2 – z1.

(ii) Draw a diagram to illustrate that z1 – z2 = z1 + (–z2). 

Show that z1 + (–z2) gives the same vector, z1 – z2 as before, but represented 

by a line segment in a different place.

The modulus of a complex number

Figure 2.8 shows the point representing z = x + yj on an Argand diagram. 

Using Pythagoras’ theorem, you can see that the distance of this point from the

origin is x2 + y2. This distance is called the modulus of z, and is denoted by | z |.

So for the complex number z = x + yj, | z | = x2 + y2. 

If z is real, z = x say, then | z | = x2, which is the absolute value of x, i.e. |x |. So

the use of the modulus sign with complex numbers fits with its previous meaning

for real numbers.

EXERCISE 2C 1 Represent each of the following complex numbers on a single Argand diagram,
and find the modulus of each complex number.

(i) 3 + 2j (ii) 4j (iii) –5 + j

(iv) –2 (v) –6 – 5j (vi) 4 – 3j

2 Given that z = 2 – 4j, represent the following by points on a single Argand

diagram.

(i) z (ii) –z (iii) z*

(iv) –z* (v) jz (vi) –jz

(vii) jz* (viii) (jz)*

3 Given that z = 10 + 5j and w = 1 + 2j, represent the following complex

numbers on an Argand diagram.

(i) z (ii) w (iii) z + w

(iv) z – w (v) w – z

O

Im

Re

y

x + yj

x

Figure 2.8



4 Given that z = 3 + 4j and w = 5 – 12j, find the following.

(i) | z | (ii) |w | (iii) | zw |

(iv) | | (v) | |
What do you notice?

5 Let z = 1 + j.

(i) Find zn and |zn | for n = –1, 0, 1, 2, 3, 4, 5. 

(ii) Plot each of the points zn from part (i) on a single Argand diagram. 

Join each point to its predecessor and to the origin.

(iii) What do you notice?

6 Give a geometrical proof that (–z)* = –(z*).

Sets of points in an Argand diagram

●? In the last section, you saw that | z | is the distance of the point representing z from

the origin in the Argand diagram.

What do you think that | z2 – z1 | represents?

If z1 = x1 + y1j and z2 = x2 + y2j, then z2 – z1 = x2 – x1 + (y2 – y1)j.

So | z2 – z1 | = (x2 – x1)2 + (y2 – y1)2.

Figure 2.9 shows an Argand diagram with the points representing the complex

numbers z1 = x1 + y1j and z2 = x2 + y2j marked.

Using Pythagoras’ theorem, you can see that the distance between z1 and z2 is

given by (x2 – x1)2 + (y2 – y1)2.

w
–
z

z
–
w
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O

Im

Re

x2 + y2j

y2 – y1

x2 – x1

x1 + y1j

Figure 2.9



So | z2 – z1 | is the distance between the points z1 and z2.

This is the key to solving many questions about sets of points in an Argand

diagram, as in the following examples.

EXAMPLE 2.5 Draw an Argand diagram showing the set of points z for which | z – 3 – 4j | = 5.

SOLUTION

| z – 3 – 4j | can be written as | z – (3 + 4j) |, and this is the distance from the point

3 + 4j to the point z. 

This equals 5 if the point z lies on the circle with centre 3 + 4j and radius 5 (see

figure 2.10).

●? How would you show the sets of points for which

(i) | z – 3 – 4j | � 5 

(ii) | z – 3 – 4j | � 5 

(iii) | z – 3 – 4j | � 5 ?

EXAMPLE 2.6 ● This example is enrichment material.

Draw an Argand diagram showing the set of points z for which 

| z – 3 – 4j | � | z + 1 – 2j |.

SOLUTION

The condition can be written as | z – (3 + 4j) | � | z – (–1 + 2j) |.

| z – (3 + 4j) | is the distance of point z from the point 3 + 4j, point A in figure

2.11, and | z – (–1 + 2j) | is the distance of point z from the point –1 + 2j, point B

in figure 2.11.
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4j

Figure 2.10



These distances are equal if z is on the perpendicular bisector of AB.

So the given condition holds if z is on this bisector or in the half plane on the side

of it containing A, shown shaded in figure 2.11.

●? How would you show the sets of points for which

(i) | z – 3 – 4j | = | z + 1 – 2j |
(ii) | z – 3 – 4j | � | z + 1 – 2j |
(iii) | z – 3 – 4j | � | z + 1 – 2j |?

EXERCISE 2D 1 For each of parts (i) to (viii), draw an Argand diagram showing the set of points
z for which the given condition is true.

(i) | z | = 2 (ii) | z – 4 | � 3

(iii) | z – 5j | = 6 (iv) | z + 3 – 4j | � 5

(v) |6 – j – z | � 2 (vi) | z + 2 + 4j | = 0

(vii) 2 � | z – 1 + j | � 3 (viii) Re(z) = –2

2 Draw an Argand diagram showing the set of points z for which | z – 12 + 5j | � 7.

Use the diagram to prove that, for these z, 6 � | z | � 20.

3 What are the greatest and least values of  | z + 3 – 2j | if 

| z – 5 + 4j | � 3?

4 By using an Argand diagram see if it is possible to find values of z for which  

| z – 2 + j | � 10 and | z + 4 + 2j | � 2 simultaneously.

● The remaining question relates to enrichment material.

5 For each of parts (i) to (iv), draw an Argand diagram showing the set of points 

z for which the given condition is true.

(i) | z | = | z – 4 | (ii) | z | � | z – 2j |

(iii) | z + 1 – j | = | z – 1 + j | (iv) | z + 5 + 7j | � | z – 2 – 6j |
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3 + 4j

–1 + 2j

Figure 2.11



The modulus–argument form of complex numbers

The position of the point z in an Argand diagram can be described by means of

the length of the line connecting this point to the origin, and the angle which this

line makes with the positive real axis (see figure 2.12).

The distance r is of course | z | , the modulus of z as defined on page 57. 

The angle θ is slightly more complicated: it is measured anticlockwise from the

positive real axis, normally in radians. However, it is not uniquely defined since

adding any multiple of 2π to θ gives the same direction. To avoid confusion, it is

usual to choose that value of θ for which –π � θ � π. This is called the principal

argument of z, denoted by arg z. Then every complex number except zero has a

unique principal argument. The argument of zero is undefined.

For example, with reference to figure 2.13,

arg(–4) = π

arg(–2j) = –

arg(1.5) = 0

arg(–3 + 3j) = 3π––
4

π–
2
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Figure 2.12

When describing complex
numbers, it is usual to give

the angle θ in radians.

3j

–2j

Figure 2.13

Remember that
π radians = 180°.



●? Without using your calculator, state the values of the following.

(i) arg j (ii) arg (–4 – 4j) (iii) arg (2 – 2j)

You can see from figure 2.14 that

x = rcosθ y = r sinθ

r = x2 + y2 tanθ = 

and the same relations hold in the other quadrants too.

Since x = rcosθ and y = r sinθ, we can write the complex number z = x + yj in the

form

z = r(cosθ + j sinθ).

This is called the modulus–argument form.

ACTIVITY 2.8 (i) Set your calculator to degrees and use it to find the following.

(a) arctan 1 (b) arctan 2 (c) arctan 100

(d) arctan (–2) (e) arctan (–50) (f) arctan (–200)

(Note: your calculator may use tan–1x or inv tan x to mean arctan x.)

What are the largest and smallest possible values, in degrees, of arctanx?

(ii) Now set your calculator to radians. 

Find arctanx for some different values of x.

What are the largest and smallest possible values, in radians, of arctan x?

If you know the modulus and argument of a complex number, it is easy to use the

relations x = rcosθ and y = r sinθ to find the real and imaginary parts of the

complex number.

Similarly, if you know the real and imaginary parts, you can find the modulus

and argument of the complex number using the relations r = x2 + y2 and 

tanθ = , but you do have to be quite careful in finding the argument. It is 
y
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y
–
x
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Figure 2.14
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tempting to say that θ = arctan( ), but, as you saw in the last activity, this gives 

a value between – and , which is correct only if z is in the first or fourth 

quadrants.

For example, suppose that the point z1 = 2 – 3j has argument θ1, and the point 

z2 = –2 + 3j has argument θ2.

It is true to say that tanθ1 = tanθ2 = – . In the case of z1, which is in the fourth

quadrant, θ1 is correctly given by arctan (– ) ≈ –0.98 rad (≈ –56°). However, in

the case of z2, which is in the second quadrant, θ2 is given by (– ) + π ≈ 2.16 rad 

(≈ 124°) These two points are illustrated in figure 2.15.

Figure 2.16 shows the values of the argument in each quadrant. It is wise always

to draw a sketch diagram when finding the argument of a complex number.

ACTIVITY 2.9 Mark the points 1 + j, 1 – j, –1 + j, –1 – j on an Argand diagram. 

Find argz for each of these, and check that your answers are consistent with

figure 2.16.

3–
2

3–
2

3–
2

π–
2

π–
2

y
–
x

Re

Figure 2.15

Arg –

Arg +

+

–

Figure 2.16



Note

The modulus–argument form of a complex number is sometimes called the polar

form, as the modulus of a complex number is its distance from the origin, sometimes

called the pole. Equations of curves can be given in polar form: this is covered in FP2.

ACTIVITY 2.10 Most calculators can convert from (x, y) to (r, θ) (called rectangular to polar, and
often shown as R → P) and from (r, θ) to (x, y) (polar to rectangular, P → R).
Find out how to use these facilities on your calculator, and compare with other
available types of calculator. 
Does your calculator always give the correct θ, or do you sometimes have to add
or subtract π (or 180°)?

A complex number in modulus–argument form must be given in the form 
z = r(cosθ + j sinθ), not, for example, in the form z = r(cosθ – j sinθ). The value
of r must also be positive. So, for example, the complex number –2(cosα + jsinα)
is not in modulus–argument form. However, by using some of the relationships 

cos(π – α) = –cosα sin(π – α) = sinα
cos(α – π) = –cosα sin(α – π) = –sinα
cos(–α) = cosα sin(–α) = –sinα

you can rewrite the complex number, for example

–2(cosα + j sinα) = 2(–cosα – j sinα)

= 2(cos(α – π) + j sin(α – π)).

This is now written correctly in modulus–argument form. The modulus is 2 and

the argument is α – π.

●? How would you rewrite the following in modulus–argument form?

(i) –2(cosα – j sinα) (ii) 2(cosα – j sinα)

When you use the modulus–argument form of a complex number, remember 

to give the argument in radians, and to use a simple rational multiple of π
where possible. 

ACTIVITY 2.11 Copy and complete this table. 

Give your answers in terms of 2 or 3 where appropriate, rather than as

decimals. You may find figure 2.17 helpful.

1 1

2 2

1

1

Figure 2.17
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EXAMPLE 2.7 Write the following complex numbers in modulus–argument form.

(i) 4 + 3j (ii) –1 + j (iii) –1 – 3j

SOLUTION

(i) x = 4, y = 3

Modulus = 32 + 42 = 5

Since 4 + 3j lies in the first quadrant, the argument = arctan .

4 + 3j = 5(cosα + j sinα), where α = arctan ≈ 0.644 radians

(ii) x = –1, y = 1

Modulus = 12 + 12 = 2

Since –1 + j lies in the second quadrant, 

argument = arctan(–1) + π

= – + π = .

–1 + j = 2(cos + j sin )
(iii) x = –1, y = – 3

Modulus = 1 + 3 = 2

Since –1 – 3j lies in the third quadrant, 

argument = arctan 3 – π

= – π = – .

–1 – 3j = 2(cos(– )+ j sin(– ))
ACTIVITY 2.12 ● This activity is enrichment material.

The complex numbers w and z are given by w = 1 + j and z = 1 – 3j.

(i) Find (a) wz (b) .

(ii) Find the modulus and argument of the following.

(a) w (b) z (c) wz (d)

(iii) What are the relationships between |w |, | z |, |wz | and | |?
What are the relationships between argw, argz, argwz and arg ?

w–z

w–z

w–z

w–z

2π––
3

2π––
3

2π––
3

π–
3

3π––
4

3π––
4

3π––
4

π–
4

3–
4

3–
4
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(iv) Now let w = r1(cosθ1 + j sinθ1) and z = r2(cosθ2 + j sinθ2).

(a) Find expressions for wz and and use the expressions you found for 

sin(α + β), cos(α + β), sin (α – β) and cos (α – β) in Activity 1.10 on

page 25 to write these in modulus–argument form.

(b) Hence find expressions for |wz |, | |, argwz and arg .

EXERCISE 2E 1 Write down the values of the modulus and the principal argument of each of 
these complex numbers.

(i) 8(cos + j sin ) (ii)

(iii) 4(cos – j sin ) (iv) –3(cos(–3) + j sin(–3))

2 For each complex number, find the modulus and principal argument, and

hence write the complex number in modulus–argument form. 

Give the argument in radians, either as a simple rational multiple of π or

correct to 3 decimal places.

(i) 1 (ii) –2 (iii) 3j

(iv) –4j (v) 1 + j (vi) –5 – 5j

(vii) 1 – 3j (viii) 6 3 + 6j (ix) 3 – 4j

(x) –12 + 5j (xi) 4 + 7j (xii) –58 – 93j

3 Write each complex number with the given modulus and argument in the

form x + yj, giving surds in your answer where appropriate.

(i) | z | = 2, argz = (ii) | z | = 3, argz = 

(iii) | z | = 7, argz = (iv) | z | = 1, argz = –

(v) | z | = 5, argz = – (vi) | z | = 6, argz = –2 

4 Given that arg(5 + 2j) = α, find the principal argument of each of the following

in terms of α.

(i) –5 – 2j (ii) 5 – 2j (iii) –5 + 2j

(iv) 2 + 5j (v) –2 + 5j

Sets of points using the modulus–argument form

●? You already know that argz gives the angle between the line connecting the point

z with the origin and the real axis.

What do you think arg(z2 – z1) represents?

2π––
3

π–
4

5π––
6

π–
3

π–
2

π–
3

π–
3

cos2.3 + j sin2.3
––––––––––––––

4
π–
5

π–
5

w–z
w–z

w–z



If  z1 = x1 + y1j and z2 = x2 + y2j, then z2 – z1 = x2 – x1 + (y2 – y1)j.

arg(z2 – z1) = arctan

Figure 2.18 shows an Argand diagram 

with the points representing the complex

numbers z1 = x1 + y1j and z2 = x2 + y2j

marked.

The angle between the line joining z1 and z2

and a line parallel to the real axis is given by

arctan .

So arg(z1 – z2) is the angle between the line joining z1 and z2 and a line parallel to

the real axis.

EXAMPLE 2.8 Draw Argand diagrams showing the sets of points z for which

(i) argz = 

(ii) arg(z – j) = 

(iii) 0 � arg(z – j) � .

SOLUTION

(i) argz = ⇔ the line joining the origin to the point z has direction 

⇔ z lies on the half-line from the origin in the direction, 

see figure 2.19.

(Note that the origin is not included, since arg0 is undefined.)

π–
4

π–
4

π–
4

π–
4

π–
4

π–
4

y2 – y1––––––x2 – x1

y2 – y1––––––x2
_ x1
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x2 + y2j

y2 – y1

x2 – x1

x1 + y1j

Figure 2.18

Figure 2.19
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(ii) arg(z – j) = ⇔ the line joining the point j to the point z has direction 

⇔ z lies on the half-line from the point j in the direction, 

see figure 2.20.

(iii) 0 � arg(z – j) � ⇔ the line joining the point j to the point z has direction

between 0 and (inclusive) 

⇔ z lies in the one-eighth plane shown in figure 2.21.

EXERCISE 2F 1 For each of parts (i) to (vi) draw an Argand diagram showing the set of points z
for which the given condition is true.

(i) argz = – (ii) arg(z – 4j) = 0

(iii) arg(z + 3) � (iv) arg(z + 1 + 2j) = 

(v) arg(z – 3 + j) � – (vi) – � arg(z + 5 – 3j) �

2 Find the least and greatest possible values of argz if | z – 8j | � 4.

3 You are given the complex number w = – 3 + 3j.

(i) Find argw and |w – 2j |.
(ii) On an Argand diagram, shade the region representing complex numbers z

which satisfy both of these inequalities.

|z – 2j | � 2 and π � argz � π.

Indicate the point on your diagram which corresponds to w.

2–
3

1–
2

π–
3

π–
4

π–
6

3π––
4

π–
2

π–
3

π–
4

π–
4

π–
4

π–
4

π–
4
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(iii) Given that z satisfies both the inequalities in part (ii), find the greatest

possible value of |z – w |.
[MEI, part]

4 (i) If k is positive and | z | � k, prove that 0 � | z + k | � 2k and

– � arg(z + k) � .

(ii) Find the least and greatest values of | z + 2k | and arg(z + 2k).

Complex numbers and equations

The reason for inventing complex numbers was to provide solutions for

quadratic equations which have no real roots, i.e. to solve az2 + bz + c = 0 

when the discriminant b2 – 4ac is negative. This is straightforward since if 

b2 – 4ac = –k2 (where k is real) then the formula for solving quadratic equations 

gives z = . These are the two complex roots of the equation. Notice that

these roots are a pair of conjugate complex numbers.

It would be natural to think that to solve cubic equations would require a further
extension of the number system to give some sort of ‘super-complex’ numbers,
with ever more extensions to deal with higher degree equations. But luckily
things are much simpler. It turns out that all polynomial equations (even those
with complex coefficients) can be solved by means of complex numbers. This 
was realised as early as 1629 by Albert Girard, who stated that an nth degree
polynomial equation has precisely n roots, including complex roots and 
taking into account repeated roots. (For example, the fifth degree equation 
(z – 2)(z – 4)2(z2 + 9) = 0 has five roots: 2, 4 (twice), 3j and –3j.) Many great
mathematicians tried to prove this. The chief difficulty is to show that every
polynomial equation must have at least one root: this is called the Fundamental
Theorem of Algebra and was first proved by Gauss (again!) in 1799.

The Fundamental Theorem, which is too difficult to prove here, is an example of
an existence theorem: it tells us that a solution exists, but does not say what it is.
To find the solution of a particular equation you may be able to use an exact
method, such as the formula for the roots of a quadratic equation. (There are
much more complicated formulae for solving cubic or quartic equations, but not
in general for equations of degree five or more.) Alternatively, there are good
approximate methods for finding roots to any required accuracy, and your
calculator probably has this facility.

ACTIVITY 2.13 Find out how to use your calculator to solve polynomial equations.

You have already noted that the complex roots of a quadratic equation occur as a

conjugate pair. The same is true of the complex roots of any polynomial equation

with real coefficients. This is very useful in solving polynomial equations with

complex roots, as shown in the following examples.

–b ± kj––––––
2a

π–
2

π–
2



EXAMPLE 2.9 Given that 1 + 2j is a root of 4z3 – 11z2 + 26z – 15 = 0, find the other roots.

SOLUTION

Since the coefficients are real, the conjugate 1 – 2j is also a root.

Therefore [z – (1 + 2j)] and [z – (1 – 2j)] are both factors of 4z3 – 11z2 + 26z – 15 = 0.

This means that (z – 1 – 2j)(z – 1 + 2j) is a factor of 4z3 – 11z2 + 26z – 15 = 0.

(z – 1 – 2j)(z – 1 + 2j) = [(z – 1) – 2j][(z – 1) + 2j]

= (z – 1)2 + 4

= z2 – 2z + 5

By looking at the coefficient of z3 and the constant term, you can see that the

remaining factor is 4z – 3.

4z3 – 11z2 + 26z – 15 = (z2 – 2z + 5)(4z – 3)

The third root is therefore .

EXAMPLE 2.10 Given that –2 + j is a root of the equation z4 + az3 + bz2 + 10z + 25 = 0, find the

values of a and b, and solve the equation.

SOLUTION

z = –2 + j

z2 = (–2 + j)2 = 4 – 4j + (j)2 = 4 – 4j – 1 = 3 – 4j

z3 = (–2 + j)z2 = (–2 + j)(3 – 4j) = –6 + 11j + 4  = –2 + 11j

z4 = (–2 + j)z3 = (–2 + j)(–2 + 11j) = 4 – 24j – 11 = –7 – 24j

Now substitute these into the equation.

–7 – 24j + a(–2 + 11j) + b(3 – 4j) + 10(–2 + j) + 25 = 0

(–7 – 2a + 3b – 20 + 25) + (–24 + 11a – 4b + 10)j = 0

Equating real and imaginary parts gives

–2a + 3b – 2 = 0

11a – 4b – 14 = 0.

Solving these equations simultaneously gives a = 2, b = 2.

The equation is z4 + 2z3 + 2z2 + 10z + 25 = 0.

Since –2 + j is one root, –2 – j is another root.

So (z + 2 – j)(z + 2 + j) = (z + 2)2 + 1

= z2 + 4z + 5 is a factor.
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Using polynomial division or by inspection

z4 + 2z3 + 2z2 + 10z + 25 = (z2 + 4z + 5)(z2 – 2z + 5).

The other two roots are the solutions of the quadratic equation z2 – 2z + 5 = 0.

Using the quadratic formula

z =       

=       

= 

= 1 ± 2j.

The roots of the equation are –2 ± j and 1 ± 2j.

EXERCISE 2G 1 Check that 2 + j is a root of z3 – z2 – 7z + 15 = 0, and find the other roots.

2 One root of z3 – 15z2 + 76z – 140 = 0 is an integer. 

Solve the equation.

3 Given that 1 – j is a root of z3 + pz2 + qz + 12 = 0, find the real numbers 

p and q, and the other roots.

4 One root of z4 – 10z3 + 42z2 – 82z + 65 = 0 is 3 + 2j. 

Solve the equation.

5 The equation z4 – 8z3 + 20z2 – 72z + 99 = 0 has a pure imaginary root. 

Solve the equation.

6 You are given the complex number w = 1 – j.

(i) Express w2, w3 and w4 in the form a + bj.

(ii) Given that w4 + 3w3 + pw2 + qw + 8 = 0, where p and q are real numbers,

find the values of p and q.

(iii) Write down two roots of the equation z4 + 3z3 + pz2 + qz + 8 = 0, where p

and q are the real numbers found in part (ii).

[MEI, part]

7 (i) Given that α = –1 + 2j, express α2 and α3 in the form a + bj. 

Hence show that α is a root of the cubic equation

z3 + 7z2 + 15z + 25 = 0.

(ii) Find the other two roots of this cubic equation.

(iii) Illustrate the three roots of the cubic equation on an Argand diagram, and

find the modulus and argument of each root.

(iv) L is the locus of points in the Argand diagram representing complex

numbers z for which |z + | = . Show that all three roots of the cubic

equation lie on L and draw the locus L on your diagram.
[MEI]

5–
2

5–
2

2 ± 4j–––––
2

2 ± –16––––––––
2

2 ± 4 – 4 × 5––––––––––––
2
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8 The cubic equation z3 + 6z2 + 12z + 16 = 0 has one real root α and two

complex roots β, γ.

(i) Verify that α = –4, and find β and γ in the form a + bj.

(Take β to be the root with positive imaginary part.)

(ii) Find and in the form a + bj.

(iii) Find the modulus and argument of each of α, β and γ.

(iv) Illustrate the six complex numbers α, β, γ, , , on an Argand 

diagram, making clear any geometrical relationships between the points.

[MEI, part]

9 You are given that the complex number α = 1 + 4j satisfies the cubic equation

z3 + 5z2 + kz + m = 0,

where k and m are real constants.

(i) Find α2 and α3 in the form a + bj.

(ii) Find the value of k and show that m = 119.

(iii) Find the other two roots of the cubic equation.

Give the arguments of all three roots.

(iv) Verify that there is a constant c such that all three roots of the cubic

equation satisfy

| z + 2 | = c.

Draw an Argand diagram showing the locus of points representing all

complex numbers z for which | z + 2 | = c.

Mark the points corresponding to the three roots of the cubic equation.

[MEI]

10 In this question, α is the complex number –1 + 3j.

(i) Find α2 and α3.

It is given that λ and μ are real numbers such that λα3 + 8α2 + 34α + μ = 0.

(ii) Show that λ = 3, and find the value of μ.

(iii) Solve the equation λz3 + 8z2 + 34z + μ = 0, where λ and μ are as in part (ii).

Find the modulus and argument of each root, and illustrate the three

roots on an Argand diagram.
[MEI, part]

11 The cubic equation z3 + z2 + 4z – 48 = 0 has one real root α and two complex

roots β and γ.

(i) Verify that α = 3 and find β and γ in the form a + bj.

Take β to be the root with positive imaginary part, and give your answers

in an exact form.

(ii) Find the modulus and argument of each of the numbers α, β, γ, , giving

the arguments in radians between –π and π.

Illustrate these four numbers on an Argand diagram.

β
––γ

1––
γ

1––
β

1––
α

1––
γ

1––
β



K
ey p

o
in

ts

2

73

(iii) On your Argand diagram, draw the locus of points representing complex

numbers z such that

arg(z – α) = argβ.

[MEI, part]

KEY POINTS

1 Complex numbers are of the form z = x + yj with j2 = –1.

x is called the real part, Re(z), and y is called the imaginary part, Im(z).

2 The conjugate of z is z* = x – yj.

3 To add or subtract complex numbers, add or subtract the real and imaginary

parts separately.

(x1 + y1j) ± (x2 + y2j) = (x1 ± x2) + (y1 ± y2)j

4 Multiplication:

(x1 + y1j)(x2 + y2j) = (x1x2 – y1y2) + (x1y2 + x2y1)j

5 Division – multiply top and bottom by the conjugate of the bottom.

= 

6 The complex number z can be represented geometrically as the point (x, y).

This is known as an Argand diagram.

7 The modulus of z = x + yj is | z | = x2 + y2. 

This is the distance of the point z from the origin.

8 The distance between the points z1 and z2 in an Argand diagram is |z1 – z2 |.

9 Modulus properties:

| z |2 = zz* | z1 + z2 | � | z1 | + | z2 |

10 The principal argument of z, argz, is the angle θ, –π � θ � π, between the

line connecting the origin and the point z and the positive real axis.

11 The modulus–argument form of z is z = r(cosθ + j sinθ), where r = | z | and 

θ = argz.

12 x = rcosθ y = r sinθ

r = x2 + y2 tanθ = 

13 A polynomial equation of degree n has n roots, taking into account complex

roots and repeated roots. In the case of polynomial equations with real

coefficients, complex roots always occur in conjugate pairs.

y
–
x

(x1x2 + y1y2) + (x2y1 – x1y2)j
––––––––––––––––––––––––

x2
2 + y2

2

x1 + y1j
––––––x2 + y2
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Graphs and inequalities

Every picture is worth a thousand words.

Traditional Chinese proverb

The graph in figure 3.1 shows how the population of rabbits on a small island

changes over time after a small group is introduced to the island.

●? What can you conclude from the graph?

Good diagrams not only help writers to communicate ideas efficiently, but they

also help students and researchers to discover and understand relationships.

Sketching graphs has been introduced in C1 and C2. If you have already covered

this work, you will know that a sketch graph should show the essential features of

the graph, such as where it cuts the axes, the nature and position of turning

points, any symmetry, and the behaviour of the graph as x or y tends to infinity.

Approximate locations rather than exact positions are often used.

In this chapter you will learn to find the key features of a curve by looking at its

equation, and to use them to sketch the curve. Although calculus methods

(introduced in C2) are available, they are often not needed.

Throughout this chapter you will find it helpful to use a graphic calculator or

computer graph-drawing package to check your sketches. However, you should

aim to be able to produce your own sketch graphs without being dependent on

technology. To be able to sketch the graph of a function accurately without using

a machine demonstrates a good appreciation of the behaviour of that function.

Learning to draw such sketches will help you realise how various functions

behave, and why they behave like that. 

3

Time (years)

N
um

be
r 

of
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ts

Figure 3.1
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Graphic calculators and computer graph-drawing packages draw graphs rapidly,

many using ‘dot-to-dot’ methods. Sometimes the operator has the opportunity 

to adjust the resolution (or step between successive dots): smaller steps produce

more accurate graphs. Even when using small steps the display should be

interpreted carefully as some packages wrongly connect together separate

branches of a curve.

ACTIVITY 3.1 Use a graphic calculator or computer graph-drawing package to draw the graph of 

y = from x = –4 to x = 4 and compare the display with the diagrams in figure 3.2. 

Try changing the x range, or the resolution.

The incorrect diagram is the output from a computer graph-drawing package.

●? (i) Why is it wrong to join the two branches of y = ?

(ii) Is it better to join points with straight lines or with curves?

(iii) Why do graphic calculators not display smooth curves?

Even if your graphic calculator does produce less than perfect graphs, don’t throw

it away! Ability to control and correctly interpret its display turns it into a

valuable tool. Adjusting the range of the display – effectively adjusting the width

and height of the window through which the graph is viewed – changes the

horizontal and vertical scales. Most calculators allow you to zoom in or out.

Some allow you to scroll horizontally or vertically. Unfortunately the controls are

not yet standardised across the various makes of calculator, so it is inappropriate

to describe them in detail here. But do experiment with them, so that you learn

to use them to advantage, paying particular attention to the range controls.

1–
x

1–
x

Figure 3.2



Graphs of rational functions

A rational number is defined as a number which can be expressed as where the 

numerator, n, and the denominator, d, are integers, and d ≠ 0. In a similar way a

rational function is defined as a function which can be expressed in the form

, where the numerator, N(x), and denominator, D(x), are polynomials, and 

D(x) is not the zero polynomial. This section concentrates on how to sketch

graphs of rational functions.

Think about the graph of y = . If you translate it three units to the right and 

two units up you obtain the graph of y = + 2 which can be rearranged as 

y = (see figure 3.3).

Asymptotes

Imagine yourself moving along the curve y = from the left. As your 

x co-ordinate gets close to 3, your y co-ordinate tends to –∞, and you get closer

and closer to the vertical line x = 3, shown dashed. 

If you move along the curve again, letting your x co-ordinate increase without

limit, you get closer and closer to the horizontal line y = 2, also shown dashed.

These dashed lines are examples of asymptotes. An asymptote is a straight line

which a curve approaches tangentially as x and/or y tends to infinity. The line 

x = 3 is a vertical asymptote; the line y = 2 is a horizontal asymptote. It is usual

for asymptotes to be shown by dashed lines in books. In their own work, people

often use a different colour for asymptotes.

In general the line x = a is a vertical asymptote for the curve y = if D(a) = 0 

and N(a) ≠ 0. The signs of the numerator N(x) and the denominator D(x) when

x is close to a enable us to determine whether y tends to positive or negative infinity

as x tends to a from left or from right. This is shown in Step 2 below.

N(x)
––––
D(x)

2x – 5–––––
x – 3

2x – 5–––––
x – 3

1––––
x – 3

1–
x

N(x)
––––
D(x)

n
–
d
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Figure 3.3
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●? What are the vertical asymptotes of the graphs of the following?

(i) y = (ii) y = (iii) y = 

Check your answers by sketching each graph using a computer or graphic calculator.

The essential features of a sketch graph

Shown below are the steps used in building up a sketch graph of 

y = .

Step 1 Find where the graph cuts the axes

The y intercept is where the graph cuts the y axis. You find it by evaluating y when 

x = 0. In the case of the equation y = , the y intercept is (0, –1).

The x intercept is where the graph cuts the x axis. To find it, you put y = 0, and

solve the resulting equation, getting, in this case, just one root, x = –2. You now

know that this graph passes through (0, –1) and (–2, 0) and does not cut the axes

anywhere else.

●? Where does the graph of y = cut the axes?

Step 2 Find the vertical asymptotes and examine the
behaviour of the graph either side of them 

The denominator of is zero when x = –1 or 2, but these values do 

not make the numerator zero, so the vertical asymptotes are the lines x = –1 

and x = 2. 

Behaviour of the graph either side of the asymptote x = –1

To examine the behaviour near x = –1, we look at the three terms (x + 2), (x – 2)

and (x + 1), paying particular attention to their signs (see figure 3.4).

x + 2––––––––––––
(x – 2)(x + 1)

3x + 1–––––
x – 2

x + 2––––––––––––
(x – 2)(x + 1)

x + 2––––––––––––
(x – 2)(x + 1)

2––––––––––––––
(2x – 1)(x2 + 1)

x – 2––––––––––––
(x – 1)(x + 2)

1––––
x + 2



Behaviour of the graph either side of the asymptote x = 2

You can use a similar method to examine the behaviour of the graph as it

approaches its other vertical asymptote, x = 2. You will find that y → –∞ as x → 2

from the left and y → +∞ as x → 2 from the right. Figure 3.5 shows the details

obtained so far.

●? What is the vertical asymptote of the graph of y = ?

Describe the behaviour of the graph on each side of the asymptote.

3x + 1–––––
x – 2
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Figure 3.4

Vertical
asymptotes

When x is slightly less than –1

(x + 2) is positive{ (x – 2) is negative
(x + 1) is negative and close to zero

(x + 2)
so that y = ––––––––––– is large and positive.

(x – 2)(x + 1)
You can make y as large as you like by taking
x sufficiently close to –1 
⇒ as x tends to –1 from the left y → +∞.

When x is slightly more than –1

(x + 2) is positive{ (x – 2) is negative
(x + 1) is positive and close to zero so that

(x + 2)
y = ––––––––––– is numerically large but negative.

(x – 2)(x + 1)
You can make | y | as large as you like by taking
x sufficiently close to –1 
⇒ as x tends to –1 from the right y → –∞.

Figure 3.5

y → +∞ as x → 2 from the right.

y → –∞ as x → 2 from the left.



Step 3 Examine the behaviour as x tends to infinity

We write x → ∞ to mean ‘x tends to infinity’, i.e. x becomes very large in a

positive sense. Similarly x → –∞ means ‘x tends to negative infinity’, i.e. x

becomes very large in a negative sense.

●? Find the value of y = when x is

(i) 100 (ii) 1000 (iii) 10 000

(iv) –100 (v) –1000 (vi) –10000

What do you think happens to y as x → ∞? 

What happens to y as x → –∞?

When x is numerically very large (either positive or negative) the 2 in the

numerator and the –2 and the 1 in the denominator become negligible compared

to the values of x. So as x → ±∞, 

y = → = → 0.

This means that the line y = 0 is a horizontal asymptote. 

●? (i) What are the signs of (x + 2), (x – 2) and (x + 1) for

(a) large, positive values of x

(b) large, negative values of x?

(ii) What is the sign of y for 

(a) large, positive values of x

(b) large, negative values of x?

From the discussion point above, we now know that y → 0 from above as x → ∞, and

y → 0 from below as x → –∞. This additional information is shown in figure 3.6.

1
–
x

x
––
x2

x + 2––––––––––––
(x – 2)(x + 1)

x + 2––––––––––––
(x – 2)(x + 1)
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The x axis is
a horizontal
asymptote.
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In the same way, if the numerator of any rational function is of lower degree than

the denominator, then y = 0 is a horizontal asymptote.

If the numerator has the same degree as the denominator, then as x → ±∞, 

y tends to a fixed rational number. So there is a horizontal asymptote of the 

form y = c.

●? How does the graph of y = behave as x → ± ∞?

Step 4 Complete the sketch

The sketch is completed in figure 3.7. Notice that this leads us to conclude that

there is a local maximum between x = –1 and x = 2, and a local minimum to the

left of x = –2. We do not know the exact x co-ordinate or the y co-ordinate of

either the minimum or the maximum. Nor have we shown that there are no

other turning points (see below for more on that subject). 

If you need to locate the stationary points precisely you can differentiate; then 

solve = 0. This  would tell you that there are only two turning points, at x = 0 

and at x = –4.

ACTIVITY 3.2 Use your answers from the earlier discussion points to sketch the graph of 

y = . Check your sketch using a computer or graphic calculator.
3x + 1–––––
x – 2

dy
––
dx

3x + 1–––––
x – 2

x + 2
y =

(x – 2)(x + 1)

Figure 3.7



How many turning points?

The sketch of y = 

was based on the information shown 

here in figure 3.8(a).

Can you be sure that there are only two

turning points, as we chose to sketch it –

see figure 3.8(b)?

How do you know that figure 3.8(c), with

additional turning points, is wrong?

One way to do this would be to differentiate y = and then put = 0. 

However, you may not have met differentiating rational functions (this is covered

in C3), and furthermore there is usually no need to find the actual co-ordinates

of the turning points. An easier approach is to think about how many times the

graph could meet a horizontal line with equation y = c, where c is a constant.

The x co-ordinate of the points where the graph of y = meets the 

line y = c satisfies the equation = c.

To solve this equation, you could multiply both sides by (x – 2)(x + 1), getting

x + 2 = c(x – 2)(x + 1)

which is a quadratic equation in x (unless c = 0).

It may have

● no real roots, corresponding to line A in figure 3.9 not meeting the curve

● or one real root, (i.e. repeated roots) – see line B

● or two distinct real roots – see lines C and D.

The quadratic equation cannot have more than two roots: a horizontal line

cannot meet the curve in more than two places. But lines E and F each meet the

curve four times, a clear contradiction.

x + 2––––––––––––
(x – 2)(x + 1)

x + 2––––––––––––
(x – 2)(x + 1)

dy
––
dx

x + 2––––––––––––
(x – 2)(x + 1)

x + 2––––––––––––
(x – 2)(x + 1)
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Figure 3.8

(a)

(b)

(c)



You already know that you have a (local) maximum between x = –1 and x = 2

and a (local) minimum to the left of x = –2. Each additional turning point

increases (by 2) the number of times the curve meets a horizontal line which

already intersects the curve. So you cannot have additional turning points.

●? Explain how this argument also tells you that the local maximum point on the

curve must be lower than the local minimum point.

EXAMPLE 3.1 Sketch the graph of y = .

SOLUTION

Step 1

When x = 0, y = = 3

When y = 0, x = 2 or 6

The graph cuts the axes at (0, 3), (2, 0) and (6, 0).

Step 2

The vertical asymptotes of the curve are x = –1 and x = 4.

To look at the behaviour near the asymptotes, a table like the one below may be

helpful.

–2 × 6––––––
1 × – 4

(x – 2)(6 – x)––––––––––––
(x + 1)(x – 4)
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Figure 3.9

x slightly x slightly x slightly x slightly

less than –1 more than –1 less than 4 more than 4  

(x – 2) – – + +  

(6 – x) + + + +  

(x + 1) – + + +  

(x – 4) – – – + 

= – = + = – = +
+ × +
–––––
+ × +

+ × +
–––––
+ × –

– × +
–––––
+ × –

– × +
–––––
– × –

(x – 2)(6 – x)
––––––––––––
(x + 1)(x + 4)
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The table shows that y is negative immediately to the left of the asymptote x = –1,

and positive immediately to its right; and y is negative immediately to the left of

the asymptote x = 4, and positive immediately to its right.

The information so far is shown in figure 3.10.

Step 3

As x → ± ∞, y = → = –1.

So y = –1 is a horizontal asymptote.

For large positive values of x (e.g. try x = 100) y > –1, so y → –1 from above 

as x → ∞.

For large negative values of x (e.g. try x = –100) y < –1, so y → –1 from below as

x → –∞.

Figure 3.11 shows this additional information.

–x2
–––
x2

(x – 2)(6 – x)––––––––––––
(x + 1)(x – 4)

O 2 4 6–1

3

x

y

Figure 3.10

O 2 4 6–1

–1

3

x

y

Figure 3.11



Step 4

The sketch is completed in figure 3.12.

The equation y = is equivalent to a quadratic in x, so each 

horizontal line (except the asymptote y = –1) will cross the graph at most twice.

There cannot be any stationary points.

●? In Example 3.1, was all the information obtained from steps 1, 2 and 3 necessary?

Could you have drawn the sketch without all this information?

Using symmetry

Recognising symmetry can help you to draw a sketch. 

If f(x) = f(–x) the graph of y = f(x) is symmetrical about the y axis, and f is an

even function (see C3, Chapter 3). Functions containing only even powers of x

are even functions. 

If f(x) = –f(–x) the graph of y = f(x) has rotational symmetry of order 2 about the

origin; in this case f is an odd function. 

●? Find an example of an even function and an odd function, and sketch their graphs.

(x – 2)(6 – x)––––––––––––
(x + 1)(x – 4)
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Figure 3.12
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EXAMPLE 3.2 (i) Sketch the graph of y = f(x), where f(x) = .

(ii) The equation f(x) = k has no real solutions.

What can you say about the value of k?

SOLUTION

(i) Step 1

When x = 0, y = , so the graph passes through (0, ).
No (real) value of x makes x2 + 1 = 0, so the graph does not cut the x axis.

Step 2

No (real) value of x makes x2 + 2 = 0, so there are no vertical asymptotes.

Step 3

As x → ± ∞, y = → = 1

So y = 1 is a horizontal asymptote.

Since the denominator is larger than the numerator for all values of x, 

y < 1 for all x. 

So y → 1 from below as x → ± ∞.

As f(x) contains only even powers of x, f is an even function and the graph is

symmetrical about the y axis (see figure 3.13).

Symmetry considerations tell you that the graph is stationary at (0, ).
As y = , no horizontal line will cross the graph more than twice, so 

you cannot have any more turning points. 
(Differentiation will also confirm that (0, ) is the only stationary point.)

(ii) Solutions of the equation f(x) = k occur where the horizontal line y = k meets
the curve y = f(x).

From the sketch of y = f(x), you can see that if k � or k � 1, then the line 
y = k will not meet the curve and so there are no solutions to the equation
f(x) = k.

1–
2

1–
2

x2 + 1––––––
x2 + 2

1–
2

x2
––
x2

x2 + 1––––––
x2 + 2

1–
2

1–
2

x2 + 1––––––
x2 + 2

Figure 3.13



EXERCISE 3A Follow the steps below for each of questions 1 to 12.

Step 1 Find the co-ordinates of the point(s) where the graph cuts the axes.

Step 2 Find the vertical asymptote(s).

Step 3 State the behaviour of the graph as x → ± ∞.
Step 4 Sketch the graph.

1 y = 2 y = 

3 y = 4 y = 

5 y = 6 y = 

7 y = 8 y = 

9 y = 10 y = 

11 y = 12 y = 

(Be careful!)

13 (i) Sketch the graph of y = .

(ii) The equation = k has no real solutions.

What can you say about the value of k?

14 (i) Sketch the graph of y = .

(ii) Write down the equation of the line of symmetry of the graph, and hence

find the co-ordinates of the local minimum point.

(iii) For what values of k does the equation = k have 

(a) two real distinct solutions

(b) one real solution

(c) no real solutions?

15 (i) Sketch the graph of y = .

(ii) Show how the equation can be rearranged as a quadratic equation in x,

provided y ≠ 0.

(iii) If y is given (and is not zero), how many values of x can be found?

(iv) Explain why the graph has no turning points anywhere.

16 Without using calculus explain why the graph of y = has no turning

points.

17 (i) Show that y = has no turning points if a � b � c.

(ii) What happens if a = c and b � a?

x – b––––––––––––
(x – a)(x – c)

x – 2––––
x + 3

x–––––
x2 – 9

1––––––––––––
(x + 1)(3 – x)

1––––––––––––
(x + 1)(3 – x)

4 – x2
––––––
4 + x2

4 – x2
––––––
4 + x2

x2 – 5x – 6––––––––––––
(x + 1)(x – 4)

x2 – 6x + 9––––––––––
x2 + 1

(2x – 3)(5x + 2)––––––––––––––
(x + 1)(x – 4)

x – 3–––––––
(x – 4)2

x–––––
x2 + 3

3 – x––––––––––––
(2 – x )(4 – x)

x – 5––––––––––––
(x + 2)(x – 3)

2 – x–––––
x + 3

x–––––
x2 – 4

1––––––
x2 + 1

2–––––––
(x – 3)2

2––––
x – 3
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18 (i) Describe the symmetry of the graph of y = and locate any 

asymptotes. 

(ii) Sketch the graph.

Inequalities

An inequality is a statement involving one of the relationships <, >, � or �.

There are two types of inequality:

● those whose truth depend on the value of the variable involved

● those which are always true.

For example: the statement x2 � 4 is true if and only if x � –2 or x � 2, whereas

the statement (x – 3)2 + y2 � 0 is true for all real values of x and y.

This section deals with the first type of inequality, in which the task is to find the

set of values for which the inequality is true. This is called solving the inequality.

There are some basic rules for manipulating inequalities.

The same basic rules apply to each of the inequalities >, <, � and �.

●? Give an example to show that inequalities may not be subtracted.

An obvious method of solving an inequality such as f(x) � 0 is to use the graph

of y = f(x): the solution is then the set of values of x for which the graph is above

the x axis. If you have already drawn the graph, or it is required for another

purpose, this is a quick and easy method. However, if a graph is not required, it

may be quicker to use an algebraic method. Example 3.3 shows two different

approaches to the same problem; one graphical and the other algebraic.

x4 – x2 + 2––––––––––
x4 + 1

E
xercise 3

A
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Rule Example (based on ‘is greater than’)  

1 You may add the same number to each side of an x � y ⇔ x + a � y + a

inequality.   

2 You may multiply (or divide) both sides of an If p is positive: x � y ⇔ px � py

inequality by the same positive number.

3 If both sides of an inequality are multiplied If n is negative: x � y ⇔ nx � ny

(or divided) by the same negative number the

inequality is reversed.  

4 You may add (but not subtract) corresponding a � b and x � y ⇒ a + x � b + y

sides of inequalities of the same type.   

5 Inequalities of the same type are transitive.   x � y and y � z  ⇒ x � z



EXAMPLE 3.3 Solve the inequality � 0.

SOLUTION 1

The graph of y = was sketched on page 80.

From figure 3.14, you can see that the graph lies below the x axis for values of 

x less than –2, and also for values of x between the two vertical asymptotes, 

x = –1 and x = 2.

The solution is x � –2 or –1 < x < 2.

This solution is shown in figure 3.15.

SOLUTION 2

As the value of x changes, a function f(x) can only change its sign as x passes

through a value where f(x) = 0 or where f(x) is undefined. These values of x are 

known as critical points. In the case of a function of the form f(x) = , the 

critical points occur when g(x) = 0 or h(x) = 0. You can then find out whether

each factor is positive or negative in each region, and hence whether or not the

inequality is true in each region.

In this case, the critical points are x = –2 (where the numerator is zero), x = –1

and x = 2 (where the denominator is zero). First note that x = –2 is included in

the solution set, but x = –1 and x = 2 are not.

g(x) ––––
h(x)

x + 2––––––––––––
(x – 2)(x + 1)

x + 2––––––––––––
(x – 2)(x + 1)
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Figure 3.14

Figure 3.15

x = –2 is included in the
solution set, since f(–2) = 0.
This is indicated by a solid

circle at x = 2.

x = –1 and x = 2 are not
included, since the function is

undefined at these points.
These are indicated by 

open circles.
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The solution is x � –2 or –1 � x � 2.

Inequalities of the form g(x) � h(x)

To solve g(x) � h(x), you could draw the graphs of y = g(x) and y = h(x) and 

find the values of x where the graph of g(x) intersects or is lower than the graph

of h(x). 

Alternatively, you can rearrange the inequality so that it is all on the left-hand

side; then use either a graphical or algebraic method. In the next example, three

different methods are shown.

EXAMPLE 3.4 Solve the inequality x + 2 � .

SOLUTION 1

Since both sides of the inequality are simple functions, it is easy to sketch graphs 

of y = x + 2 and y = .

To find the points where the graphs intersect, solve the equation x + 2 = .3–
x

3–
x

3–
x

x � –2 –2 � x � –1 –1 � x � 2 x � 2

(x + 2) – + + +

(x – 2) – – – +

(x + 1) – – + +     

= – = + = – = +
+

–––––
+ × +

+
–––––
– × +

+
–––––
– × –

–
–––––
– × –

x + 2
––––––––––––
(x – 2)(x + 1)

y

x

y = x + 2
y = x

3

y = x
3

Figure 3.16
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x (x + 2) = 3

x2 + 2x – 3 = 0

(x + 3)(x – 1) = 0

x = –3 or 1

From the graph, the solution is –3 � x � 0 or x � 1.

SOLUTION 2

x + 2 � 

⇔ x + 2 – � 0

⇔ � 0

⇔ � 0

The critical points are x = –3, x = 1 and x = 0. Notice that x = –3 and x = 1 are

included in the solution set, but x = 0 is not.

The solution is –3 � x � 0 and x � 1.

SOLUTION 3

As in Solution 2, rearrange the inequality to obtain � 0.

If this were an equation, you could multiply both sides by x, provided that x ≠ 0.

However, as this is an inequality, multiplying both sides by x is a problem; 

x could be positive or negative, and if it is negative you must reverse the

inequality. You could consider the two cases separately, but this is rather

cumbersome; a better method is to multiply both sides by x2, which is always

positive, provided that x ≠ 0.

Multiplying by x2 gives x(x + 3)(x – 1) � 0, x ≠ 0.

This cubic graph is easy to sketch.

(x + 3)(x – 1)––––––––––––
x

(x + 3)(x – 1)––––––––––––
x

x2 + 2x – 3––––––––––
x

3–
x

3–
x

Note that x = 0 is not included in 

the solution set, since is 

undefined at this point.

3–x

x � –3 –3 � x � 0 0 � x � 1 x � 1

(x + 3) – + + +

(x – 1) – – – +

x – – + +     

= – = + = – = +
+ × +
–––––

+
+ × –
–––––

+
+ × –
–––––

–
– × –
–––––

– 
(x + 3)(x – 1)
––––––––––––

x
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From the graph the solution is –3 � x < 0 or x � 1.

In the next example, both sides of the inequality are rather more complicated

expressions, so sketching graphs of both functions would involve quite a lot of

work. However, either of the methods shown in Solution 2 and Solution 3 of

Example 3.4 work well.

EXAMPLE 3.5 Solve the inequality � .

SOLUTION 1

� ⇔ – � 0

⇔ � 0

⇔ � 0

⇔ � 0

The critical points are x = 2, x = 1 and x = –1. Note that x = 2 is included in the

solution but x = 1 and x = –1 are not.

The solution is –1 � x � 1 or x = 2.

2(x – 2)2
––––––––––––
(x – 1)(x + 1)

2x2 – 8x + 8––––––––––––
(x – 1)(x + 1)

(2x – 1)(x + 1) – 9(x – 1)–––––––––––––––––––––––
(x – 1)(x + 1)

9–––––
x + 1

2x – 1–––––
x – 1

9–––––
x + 1

2x – 1–––––
x – 1

9–––––
x + 1

2x – 1–––––
x – 1

y

x1–3

Figure 3.17

This point is
available as a
solution point.

This point is not
available as a
solution point.

x � –1 –1 � x � 1 1 � x � 2 x � 2

(x – 2)2 + + + +

(x – 1) – – + +

(x + 1) – + + +   

= + = – = + = +
+

–––––
+ × +

+ 
–––––
+ × +

+
–––––
– × +

+
–––––
– × –

2(x – 2)2
––––––––––––
(x – 1)(x + 1)



SOLUTION 2

As in Solution 1, rearrange the inequality to obtain � 0.

Multiply by (x – 1)2(x + 1)2, provided x ≠ ±1:

2(x – 1)(x + 1)(x – 2)2 � 0

A sketch of y = 2(x – 1)(x + 1)(x – 2)2 gives you the solution –1 < x < 1 or x = 2.

EXERCISE 3B 1 (i) Sketch the graph of y = (x + 3)(x – 1)(2x – 7).

(ii) Solve the inequality (x + 3)(x – 1)(2x – 7) � 0.

2 (i) Sketch the graph of y = .

(ii) Solve the inequality � 0.

3 (i) Sketch the graphs of y = x2 and y = 2x + 3 on the same axes.

(ii) Solve the inequality x2 � 2x + 3.

4 (i) Sketch the graphs of y = and y = x2 on the same axes.

(ii) Solve the inequality x2 � .

5 (i) Sketch the graphs of y = x3 and y = on the same axes.

(ii) Solve the inequality x3 � .

6 Solve the following inequalities.

(i) (x – 1)(x – 2)2(x – 3)3 � 0 (ii) x3 � x(3x + 10)

(iii) � 0 (iv) � 0

(v) � 0 (vi) � x + 2

(vii) � 1 (viii) �

7 (i) Solve the inequality (x + 2)(x – 3) < 4x.

(ii) Solve the inequality x + 2 � .
4x–––––

x – 3

2–––––
2 – 3x

1–––––
x + 6

2x + 3–––––
x – 2

x3 – 4–––––
x – 2

(x + 2)(x – 4)––––––––––––
x(x – 2)2

5x – 2––––––––––––
(x + 1)(x – 2)

(x – 5)(x – 2)––––––––––––
x + 1

1
–
x

1
–
x

8
–
x

8
–
x

x + 2–––––
x – 1

x + 2–––––
x – 1

2(x – 2)2
––––––––––––
(x – 1)(x + 1)
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Figure 3.18
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8 Solve these inequalities.

(i) � 2 (ii) �

[MEI, part]

● The range of values taken by a function

On pages 81 to 82 you saw that it is possible to justify the number of turning

points on a graph by considering the number of places where the graph meets a

horizontal line of the form y = c.

It is possible to extend this idea to find the range of possible values of a function,

and hence to find the co-ordinates of turning points without using calculus.

At the beginning of this chapter the graph of y = was sketched, see

figure 3.19.

This graph meets the horizontal line y = c where c = 

⇒ c(x – 2)(x + 1) = x + 2
⇒ cx2 – cx – 2c = x + 2
⇒ cx2 – (c + 1)x – 2c – 2 = 0

●? How many roots can this equation have?

The condition for the quadratic equation cx2 – (c + 1)x – 2c – 2 = 0 to have real

roots is

(c + 1)2 – 4c(–2c – 2) � 0

c2 + 2c + 1 + 8c2 + 8c � 0

9c2 + 10c + 1 � 0

(c + 1)(9c + 1) � 0

c � –1 or c � – 1–
9

x + 2––––––––––––
(x – 2)(x + 1)

x + 2––––––––––––
(x – 2)(x + 1)

1–
2

2x – 1–––––
x + 3

x + 3–––––
2x – 1

Figure 3.19
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The expression cannot take any values between –1 and – . If you 

drew the lines  y = –1 and y = – on the sketch graph, the line y = –1 would

touch the local maximum, and the line y = – would touch the local minimum.

Therefore the local maximum has y co-ordinate –1, and the local minimum has 

y co-ordinate – .

You can then find the x co-ordinate of each turning point by substituting the 

y co-ordinates into the quadratic equation yx2 – (y + 1)x – 2y – 2 = 0.

For the local maximum y = –1 ⇒ (–1)x2 –(–1 + 1)x – (2 × –1) – 2 = 0
⇒ x2 = 0

The local maximum has co-ordinates (0, 1).

For the local minimum y = – ⇒ – x2 – (– + 1)x + – 2 = 0

⇒ – x2 – x – = 0

⇒ x2 + 8x + 16 = 0

⇒ (x + 4)2 = 0

⇒ x = –4 

The local minimum has co-ordinates (–4, – ).

●? Why must the quadratic equation you have to solve to obtain the x co-ordinates

of the turning points always be a perfect square?

1–
9

16––
9

8–
9

1–
9

2–
9

1–
9

1–
9

1–
9

1–
9

1–
9

1–
9

1–
9

x + 2––––––––––––
(x – 2)(x + 1)

y = –1

y = – 1
9

Figure 3.20
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EXERCISE 3C ● The questions in this exercise relate to enrichment material

1 (i) Rearrange y = as a quadratic equation in x.

(ii) Write down the condition for this equation to have real roots, and deduce

the maximum value of y for real x.

(iii) Find the value of x corresponding to this value of y.

(iv) Sketch the graph of y = , showing the co-ordinates of the

turning point.

2 (i) Use the method of question 1 parts (i) and (ii) to show that

1 � � 11.

(ii) Sketch the graph of y = , giving the co-ordinates of the 

turning points.

3 (i) Find the set of possible values of for real x.

(ii) Sketch the graph of y = , giving the co-ordinates of the turning 

points.

INVESTIGATIONS

1 Given that a, b, c, d and k are constants, investigate

(i) the form of the graph of y = 

(ii) the number and location of roots of the equation

= k.

2 Investigate the shape of the graph of y = when

(i) b2 � 4ac and B2 = 4AC

(ii) b2 � 4ac and B2 � 4AC

(iii) b2 � 4ac and B2 � 4AC

ax2 + bx + c––––––––––––
Ax2 + Bx + C

(x – a)(x – b)––––––––––––
(x – c)(x – d)

(x – a)(x – b)––––––––––––
(x – c)(x – d)

6x + 6––––––
x2 + 3

6x + 6––––––
x2 + 3

9x2 + 8x + 3–––––––––––
x2 + 1

9x2 + 8x + 3–––––––––––
x2 + 1

(x – 2)(x + 1)––––––––––––
x2

(x – 2)(x + 1)––––––––––––
x2
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KEY POINTS

1 A rational function is a function which can be expressed in the form , 

where the numerator, N(x), and denominator, D(x), are polynomials, and

D(x) is not the zero polynomial.

2 To sketch the graph of y = follow these steps.

Step 1 Find the intercepts, that is where the graph cuts the axes.

Step 2 Examine the behaviour of the graph near the vertical asymptotes; 

these are the lines x = a if D(a) = 0 and N(a) ≠ 0.

Step 3 Examine the behaviour as x → ±∞.

Step 4 Show what you have found in Steps 1, 2 and 3 on a sketch graph and

complete the sketch.

3 Inequalities of the form f(x) � 0 (or f(x) � 0) can be solved by sketching the

graph of y = f(x) and finding those parts of the graph which are above (or

below) the x axis. 

4 If you want to multiply (or divide) both sides of an inequality by some 

number you need to know its sign:

● if p is positive: x � y ⇔ px � py

● if n is negative: x � y ⇔ nx � ny.

When multiplying or dividing by a negative number, reverse the inequality.

5 Inequalities of the form f(x) � 0 or f(x) � 0 can also be solved by finding 

the critical points (the points where the function is either zero or undefined)

and testing whether the inequality is true in each region.

6 An alternative approach to solving an inequality involving a rational function

is to multiply by the square of the denominator (as this is automatically

positive).

N(x)–––––
D(x)

N(x)–––––
D(x)



Algebra: Identities and
roots of equations

In mathematics it is new ways of looking at old things that seem to be

the most prolific sources of far-reaching discoveries.

Eric Temple Bell, 1951

●? Figure 4.1(a) shows a cube of side x from which another cube of side y has been

removed. Figure 4.1(b) is an exploded view of the same solid.

Write down an expression for the volume of each section of the exploded view.

Use this to show that

x3 – y3 / (x – y)(x2 + xy + y2).

Is this true for all possible values of x and y?

Identities

During your work in mathematics you will have seen and used statements known

as identities, such as the one above: x3 – y3 / (x – y)(x2 + xy + y2).

You may not, perhaps, have used the symbol / before. This symbol means ‘is

identically equal to’, and is used to emphasise that a statement is true for all values

of the variables for which the expressions involved are defined.
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4

yy

y

x

x

x

Figure 4.1

(a) (b)
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Here are some more examples of identities:

1 –(1 – x) / x – 1

2 (x + y)2 / x2 + 2xy + y2

3 / a – b

Statements 1 and 2 are true for all values of x and y. Statement 3 is true for all

values of a and b, provided a + b ≠ 0, as in that case the left-hand side of the

identity is undefined.

It is important to make sure that you can tell the difference between equations

and identities.

● In an identity, all possible values of the variable (or variables) will satisfy the

identity, provided only that the functions are defined for these values. For

example, the identity (x – 1)2 / x2 – 2x + 1  is true for all values of x. It does

not make sense to try to solve this!

● In an equation, not all values of the variable (or variables) satisfy the equation.

For example, the equation x2 – 7x + 12 = 0 is only satisfied by x = 3 or x = 4.

●? What happens if you try to solve (x – 1)2 = x2 – 2x + 1?

EXAMPLE 4.1 Find the values of the constants A, B and C in the identity

2x2 – 5x – 3 / (Ax + B)(x – 2) + C.

SOLUTION 1

One method to solve this problem is to multiply out the brackets and compare

the two sides of the identity.

2x2 – 5x – 3 / (Ax + B)(x – 2) + C

/ Ax2 – 2Ax + Bx – 2B + C

/ Ax2 + (–2A + B)x – 2B + C

Since the identity is true for all values of x, the coefficient of x2 on the right of the

identity must be the same as the coefficient of x2 on the left of the identity.

Similarly, the coefficient of x on the right-hand side must be the same as the

coefficient of x on the left-hand side, and the constant term must be the same on

each side.

a2 – b2
––––––

a + b
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Comparing coefficients of x2: 2 = A

Comparing coefficients of x: –5 = –2A + B ⇒ –5 = –4 + B

⇒ –1 = B

Comparing constant terms: –3 = –2B + C ⇒ –3 = 2 + C

⇒ –5 = C

A = 2, B = –1, C = –5.

SOLUTION 2

An alternative method is to substitute any three values for x into the identity,

giving three equations in A, B and C, which you can then solve. By choosing the

values of x carefully, you can often make this very easy. In this example, using 

x = 2 gives an equation involving C only, and using x = 0 gives an equation

involving B and C only. Any value of x can be used for the third equation.

2x2 – 5x – 3 / (Ax + B)(x – 2) + C

Substitute x = 2: 8 – 10 – 3 = 0 + C ⇒ C = –5

Substitute x = 0: –3 = –2B + C ⇒ –3 = –2B – 5

⇒ 2 = –2B

⇒ –1 = B

Substitute x = 1: 2 – 5 – 3 = (A + B)( –1) + C ⇒ –6 = –A + 1 – 5

⇒ A = 2

A = 2, B = –1, C = –5.

You can also use a combination of these two methods: in this example you might

notice, without multiplying out, that the only term in x2 on the right of the

identity is Ax2, so x must be 2. You can then substitute x = 2 and x = 0 to find B

and C.

Note

The identity symbol, /, is not always used in writing down identities. It is generally

used only when it may not be clear whether or not an expression is an identity. A lot

of identities occur in trigonometry; you may have already met one or two, such as 

sin2 θ + cos2 θ = 1 and tanθ = . These identities are sometimes written using the 

identity symbol, and sometimes using the equals symbol.

ACTIVITY 4.1 Find a textbook which covers some trigonometry work, or your formula book.

Find some identities involving sinθ, cosθ or tanθ, for example the compound

angle formulae or the factor formulae. 

Use your calculator to check that these identities are true for several different

values of θ.

sinθ
––––
cosθ

This method is
called equating

coefficients.



EXERCISE 4A 1 Which of the following are identities? 

For those which are identities, rewrite them using the identity symbol. 

For those which are not identities, give a value of the variable(s) which do not

satisfy the equation.

(i) (x + 2)2 = x2 + 2x + 2 (ii) (x + 2)2 = x2 + 4x + 4

(iii) (x + y)(x – y) = x2 – y2 (iv) = –2

(v) 2x2 + x + 4 = (x – 1)2 + 3 (vi) x2 + 6x + 1 = (x + 3)2 – 8

2 Find the values of A and B in the identity x2 + 4x + 1 / (x + A)2 + B.

3 Find the values of A, B and C in the identity 

2x2 + 3x – 1 / A(x + 1)2 + B(x – 3) + C.

4 Find the values of P, Q and R in the identity 

2x + 3 / P(x – 1)2 + Q(x – 1)(x – 2) + R(x – 2).

5 Find the values of L, M and N in the identity 

3x2 + 2x – 1 / L(x + M)2 + N.

6 Find the values of A, B, C and D in the identity 

x3 – 1 / (x – 2)(Ax2 + Bx + C) + D.

7 Find the values of A and B in the identity 

/ + .

8 Find the values of A, B and C in the identity 

/ + .

Properties of the roots of polynomial equations

In the work which follows, z is used as the variable (or unknown) instead of x to

emphasise that these results apply regardless of whether the roots are complex or real.

Quadratic equations

ACTIVITY 4.2 Solve each of the following quadratic equations by factorising.

Write down the sum of the roots and the product of the roots.

What do you notice?

(i) x2 – 3x + 2 = 0 (ii) x2 + x – 6 = 0 (iii) x2 – 6x + 8 = 0

(iv) x2 – 3x – 10 = 0 (v) 2x2 – 3x + 1 = 0 (vi) 2x2 – 5x + 3 = 0

The roots of polynomial equations are usually denoted by Greek letters. The two

roots of a quadratic equation are denoted by the first two letters of the Greek

alphabet, α (alpha) and β (beta).

C
–––––
2x – 1

Ax + B
––––––
x2 + 1

2x + 1
––––––––––––
(x2 + 1)(2x – 1)

B
––––
x + 2

A
––––
x – 1

1
–––––––––––
(x – 1)(x + 2)

4x – 2
–––––
1 – 2x
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You can write the equation 

az2 + bz + c = 0, 

where a ≠ 0, in factorised form as 

a(z – α)(z – β) = 0.

This gives the identity

az2 + bz + c / a(z – α)(z – β). 

Multiplying out:

az2 + bz + c / a(z2 – αz – βz + αβ)

/ az2 – a(α + β)z + aαβ

Equating coefficients of z:

b = –a(α + β) ⇒ α + β = –

Equating constant terms:

c = aαβ ⇒ αβ = 

So the sum of the roots, α + β = –

and the product of the roots, αβ = .

From these results you can obtain information about the roots without actually

solving the equation.

●? What happens if you try to find the values of α and β by solving the equations 

α + β = – and αβ = as a pair of simultaneous equations?

ACTIVITY 4.3 The quadratic formula gives the roots of the quadratic equation az2 + bz + c = 0 as

α = , β =         ,

Use these expressions to prove that α + β = – and αβ = .c–a
b–a

–b –  b2 – 4ac
–––––––––––

2a
–b +  b2 – 4ac
–––––––––––

2a

c–a
b–a

c–a

b–a

c–a

b–a
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EXAMPLE 4.2 Find a quadratic equation with roots 5 and –3.

SOLUTION

The sum of the roots is 2 ⇒ – = 2.

The product of the roots is –15 ⇒ = –15.

Taking a to be 1 gives b = –2 and c = –15.

A quadratic equation with roots 5 and –3 is z2 – 2z – 15 = 0.

Note 

There are an infinite number of possible answers to this question. For example, if

you take a to be 2, you obtain the equation 2z2 – 4z – 30 = 0, which has the same

roots. However, taking a to be 1 gives the simplest equation, unless either b or c turn

out to be fractions, in which case you might choose a suitable value of a to make the

coefficients integers.

Using these properties of the roots of an equation sometimes allows you to form

a new equation with roots that are related to the roots of the original equation.

Example 4.3 illustrates this.

EXAMPLE 4.3 The roots of the equation 2z2 + 3z + 5 = 0 are α and β.

(i) Find the values of α + β and αβ.

(ii) Find the quadratic equation with roots 2α and 2β.

(iii) Find the quadratic equation with roots α + 1 and β + 1.

SOLUTION

(i) α + β = – = –

αβ = = 

(ii) The sum of the roots of the new equation

= 2α + 2β
= 2(α + β)

= 2 × – = –3.

The product of the roots of the new equation

= 2α × 2β
= 4αβ

= 4 × = 10.5–
2

3–
2

5–
2

c–a

3–
2

b–a

c–a

b–a



In the new equation, – = – 3 and = 10.

Taking a to be 1 gives b = 3 and c = 10.

The required equation is z2 + 3z + 10 = 0.

(iii) The sum of the roots of the new equation

= α + 1 + β + 1

= α + β + 2

= – + 2 = .

The product of the roots of the new equation

= (α + 1)(β + 1)

= αβ + α + β + 1

= – + 1 = 2.

In the new equation, – = and = 2.

Taking a to be 2 gives b = –1 and c = 4.

The required equation is 2z2 – z + 4 = 0.

●? Why do you take a to be 1 in part (ii) and 2 in part (iii)?

ACTIVITY 4.4 Solve the quadratic equations 2z2 + 3z + 5 = 0, z2 + 3z + 10 = 0 and 2z2 – z + 4 = 0

from Example 4.3 and check that the relationships between the roots of these

equations are correct.

● More on quadratic equations

Sometimes a little more work is needed to find a new equation with roots that 

are related to the roots of the original equation. Two solutions are given to

Example 4.4, showing different techniques which may be helpful.

EXAMPLE 4.4 The roots of the equation z2 – 4z – 2 = 0 are α and β. 

Find the quadratic equation with roots α2 and β2.

SOLUTION 1

α + β = 4

αβ = –2

We need to find α2 + β2 and α2β2.

c–a
1–
2

b–a

3–
2

5–
2

1–
2

3–
2

c–a
b–a
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(α + β)2 = α2 + 2αβ + β2 ⇒ 42 = α2 + β2 + 2 × –2

⇒ α2 + β2 = 16 + 4 = 20

α2β2 = (αβ)2 = (–2)2 = 4

The required equation is z2 – 20z + 4 = 0.

SOLUTION 2

Here is an alternative method of finding α2 + β2.

α is a root of z2 – 4z – 2 = 0 ⇒ α2 – 4α – 2 = 0

β is a root of z2 – 4z – 2 = 0 ⇒ β2 – 4β – 2 = 0

Adding: α2 + β2 – 4(α + β) – 4 = 0

⇒ α2 + β2 = 4(α + β) + 4 

= 4 × 4 + 4 = 20

Then proceed as in Solution 1.

EXERCISE 4B 1 Write down the sum and product of the roots of each of these quadratic
equations.

(i) 2z2 + 7z + 6 = 0 (ii) 5z2 – z – 1 = 0

(iii) 7z2 + 2 = 0 (iv) 5z2 + 24z = 0

(v) z(z + 8) = 4 – 3z (vi) 3z2 + 8z – 6 = 0

2 Write down quadratic equations (with integer coefficients) with the following

roots.

(i) 7, 3 (ii) 4, –1

(iii) –5, –4.5 (iv) 5, 0

(v) 3 repeated (vi) 3 – 2j, 3 + 2j

3 The roots of 2z2 + 5z – 9 = 0 are α and β.

Find quadratic equations with these roots.

(i) 3α and 3β (ii) –α and –β
(iii) α – 2 and β – 2 (iv) 1 – 2α and 1 – 2β

4 Using the fact that α + β = – , αβ = , what can you say about the roots α

and β of az2 + bz + c = 0 if you also know that

(i) a, b, c are all positive and b2 – 4ac � 0

(ii) b = 0

(iii) c = 0

(iv) a and c have opposite signs?

5 One root of az2 + bz + c = 0 is twice the other. Prove that 2b2 = 9ac.

6 The roots of az2 + bz + c = 0 are α and β. 

Find quadratic equations with these roots.

(i) kα and kβ (ii) k + α and k + β

c–a
b–a
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● The remaining questions relate to enrichment material

7 The roots of z2 – 2z + 3 = 0 are α and β.

(i) Write down the values of α + β and αβ.

(ii) Write + and × as single fractions and use your answer to part (i)

to find their values.

(iii) Write down an equation (with integer coefficients) whose roots are , .

(iv) Find the equation with roots that are the reciprocals of the roots of 

az2 + bz + c = 0.

8 The roots of z2 + 8z – 2 = 0 are α and β.

Find quadratic equations with these roots.

(i) α2 and β2 (ii) 2α + β and α + 2β

(iii) α2β and αβ2 (iv) and 

Cubic equations

There are corresponding properties for the roots of cubic and quartic equations

(as well as equations of higher degree).

Since a cubic equation has three roots, these are denoted by α, β and γ (gamma,

the third letter of the Greek alphabet). As before, you can write the cubic equation 

az3 + bz2 + cz + d = 0

in factorised form as 

a(z – α)(z – β)(z – γ) = 0.

This gives the identity

az3 + bz2 + cz + d / a(z – α)(z – β)(z – γ).

Multiplying out:

az3 + bz2 + cz + d / a(z – α)(z – β)(z – γ)

/ az3 – a(α + β + γ)z2 + a(αβ + αγ + βγ)z – aαβγ

Equating coefficients of z2:

b = –a(α + β + γ) ⇒ α + β + γ = –

Equating coefficients of z:

c = a(αβ + βγ + γα) ⇒ αβ + βγ + γα = 

Equating constant terms:

d = –aαβγ ⇒ αβγ = –d–a

c–a

b–a

β
–
α

α
–
β

1
–
β

1
–
α

1
–
β

1
–
α

1
–
β

1
–
α

●? Check this for
yourself.
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So the sum of the roots, α + β + γ = –

the sum of the products of roots in pairs, αβ + βγ + γα = 

and the product of the roots, αβγ = – .

As with the roots of quadratic equations, you cannot find the roots directly from

these equations. If you attempt to solve them as simultaneous equations, you will

just get back to the original cubic equation (with α, β or γ in place of z). But if

you have additional information about the roots (as in Example 4.5 perhaps),

these equations can provide a quick and easy method of solution.

Note

∑α and ∑αβ are often used to denote α + β + γ and αβ + βγ + γα respectively. Provided

you know the degree of the equation you are working with (e.g. cubic, quartic) it

should be clear what this means. Functions like these are called symmetric functions

of the roots, because exchanging any two of α, β, γ does not change the value of the

function. Similar notation is used to denote other symmetric functions of the roots.

For example, for a cubic with roots α, β and γ, ∑α2β means

α2β + αβ2 + α2γ + αγ2 + β2γ + βγ2 .

EXAMPLE 4.5 The roots of the equation

2z3 – 9z2 – 27z + 54 = 0

form a geometric progression (i.e. they may be written as , α, αr ). 

Solve the equation.

SOLUTION

αβγ = – ⇒ × α × αr = –

⇒ α3= –27

⇒ α = –3

∑α = – ⇒ + α + αr = 

⇒ –3( + 1 + r) = 

⇒ 2( + 1 + r) = –3

⇒ 2 + 2r + 2r2 = –3r

⇒ 2r2 + 5r + 2 = 0

⇒ (2r + 1)(r + 2) = 0

⇒ r = –2 or r = –

Either value of r gives the three roots , –3, 6.3–
2

1–
2

1–r

9–
2

1–r

9–
2

α–r
b–a

54––
2

α–r
d–a

α–r

d–a

c–a

b–a
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In the next example, you are asked to form a new equation with roots that are

related to the roots of the original equation. You can use a similar approach to the

one you used for quadratic equations (as in Example 4.3). Not surprisingly, this is

rather more complicated when a cubic equation is involved. A second solution is

also given, using the method of substitution, which can be simpler to use.

EXAMPLE 4.6 The roots of the cubic equation 2z3 + 5z2 – 3z – 2 = 0 are α, β, γ. 

Find the cubic equation with roots 2α + 1, 2β + 1, 2γ + 1.

SOLUTION 1

α + β + γ = – = –

αβ + βγ + γα = = –

αβγ = – = 1

For the new equation:

Sum of roots = 2α + 1 + 2β + 1 + 2γ + 1

= 2(α + β + γ) + 3

= –5 + 3 = –2

Product of roots in pairs = (2α + 1)(2β + 1) + (2β + 1)(2γ + 1) + (2γ + 1)(2α + 1)

= [4αβ + 2(α + β) + 1] + [4βγ + 2(β + γ) + 1] + 

[4γα + 2(γ +α) + 1]

= 4(αβ + βγ + γα) + 4(α + β + γ) + 3

= 4 × – + 4 × – + 3

= –13

Product of roots = (2α + 1)(2β + 1)(2γ + 1)

= 8αβγ + 4(αβ + βγ + γα) + 2(α + β + γ) + 1

= 8 × 1 + 4 × – + 2 × – + 1

= –2

In the new equation, – = –2, = –13, – = –2.

The new equation is z3 + 2z2 – 13z + 2 = 0.

SOLUTION 2 (Substitution method)

Let w = 2z + 1 so that z = .

α, β, γ are the roots of 2z3 + 5z2 – 3z – 2 = 0

⇔ 2α + 1, 2β + 1, 2γ + 1 are the roots of 2( )3
+ 5( )2

– 3( ) – 2 = 0.

⇔ (w – 1)3 + 5(w – 1)2 – 6(w – 1) – 8 = 0

⇔ w3 – 3w2 + 3w – 1 + 5w2 – 10w + 5 – 6w + 6 – 8 = 0

⇔ w3 + 2w2 – 13w + 2 = 0

w – 1––––
2

w – 1––––
2

w – 1––––
2

w – 1––––
2

d–a
c–a

b–a

5–
2

3–
2

5–
2

3–
2

d–a

3–
2

c–a

5–
2

b–a

●? Check this for
yourself.
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You can see from the above that the substitution method can be very efficient.

● More on cubic equations

The substitution method is also used in the next example.

EXAMPLE 4.7 The roots of the cubic equation az3 + bz2 + cz + d = 0 are α, β, γ. 

Find the cubic equation with roots , , .

SOLUTION

Let w = so that z = .

α, β, γ are the roots of az3 + bz2 + cz + d = 0

⇔ , , are the roots of + + + d = 0

⇔ a + bw + cw2 + dw3 = 0

Notice that taking the reciprocal of each root reverses the coefficients of the

equation. This property applies to polynomial equations of all degrees, provided

that none of the roots is zero.

ACTIVITY 4.5 The cubic equation az3 + bz2 + cz + d = 0 has roots α, β, γ. 

Explain why substituting – for z in az3 + bz2 + cz + d = 0 forms an equation

with roots αβ, βγ, γα. 

Simplify the resulting equation as much as possible and show that your result is

valid even if one of α, β, γ is zero.

Not all problems involving finding a new equation can be solved using the

substitution method. If substitution cannot be used, you will need to find the

sum of the roots, the product of the roots in pairs, and the product of the three

roots of the new equation from the information you have, as in Example 4.6

Solution 1. This can involve some fairly complicated algebra. The following

identities are sometimes useful.

(i) (∑α)2 = ∑α2 + 2∑αβ

(ii) (∑αβ)2 = ∑(αβ)2 + 2αβγ∑α

(iii) αβγ∑ = ∑αβ

ACTIVITY 4.6 Write the above identities out in full, and prove them.

1
–
α

d–––aw

c
–
w

b
––
w2

a
––
w3

1
–
γ

1
–
β

1
–
α

1
–
w

1
–
z

1
–
γ

1
–
β

1
–
α
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EXAMPLE 4.8 The cubic equation 2x3 – 3x2 – 12x – 4 = 0 has roots α, β and γ. 

(i) Write down the values of α + β + γ, βγ + γα + αβ and αβγ.

(ii) Find α2 + β2 + γ2 and (αβ)2 + (βγ)2 + (γα)2.

(iii) Find a cubic equation with integer coefficients which has these roots.

, and .

SOLUTION

(i) α + β + γ = 

βγ + γα + αβ = –6

αβγ = 2

(ii) Using identity (i) from Activity 4.6:

α2 + β2 + γ2 = (α + β + γ)2 – 2(αβ + βγ + γα)

= + 12

= 

Using identity (ii) from Activity 4.6:

(αβ)2 + (βγ)2 + (γα)2 = (αβ + βγ + γα)2 – 2αβγ(α + β + γ)

= (–6)2 – 2 × 2 ×
= 30

(iii) For the new equation:

Sum of roots = + + 

= 

= = 15

Product of roots in pairs = + + 

= β2 + γ2 + α2

= 

Product of roots = 

= αβγ

= 2

For the new equation, – = 15, = , – = 2

Taking a = 4 ⇒ b = –60, c = 57, d = –8

The new equation is 4z3 – 60z2 + 57z – 8 = 0

d–a
57––
4

c–a
b–a

αββγγα
––––––

αβγ

57––
4

γααβ
––––

βγ
βγγα
––––

αβ
αββγ
––––

γα

30––
2

(αβ)2 + (βγ)2 + (γα)2
––––––––––––––––––

αβγ

γα
––
β

βγ
––
α

αβ
––
γ

3–
2

57––
4

9–
4

3–
2

γα
––
β

βγ
––
α

αβ
––
γ



EXERCISE 4C 1 The roots of the cubic equation are 2z3 + 3z2 – z + 7 = 0 are α, β, γ.

Find the following.

(i) ∑α (ii) ∑αβ (iii) αβγ

2 Find cubic equations (with integer coefficients) with the following roots.

(i) 1, 2, 4 (ii) 2, –2, 3

(iii) 0, –2, –1.5 (iv) 2 (repeated), 2.5

(v) –2, –3, 5 (vi) 1, 2 + j, 2 – j

3 The roots of each of these equations are in arithmetic progression (i.e. they

may be written as α – d, α, α + d).

Solve each equation.

(i) z3 – 15z2 + 66z – 80 = 0 (ii) 9z3 – 18z2 – 4z + 8 = 0

(iii) z3 – 6z2 + 16 = 0 (iv) 54z3 – 189z2 + 207z – 70 = 0

4 The roots of the equation 2z3 – 12z2 + kz – 15 = 0 are in arithmetic

progression. 

Solve the equation and find k.

5 Solve 32z3 – 14z + 3 = 0 given that one root is twice another.

6 The roots of the equation 2z3 + 4z2 – 3z + 1 = 0 are α, β, γ. 

Find cubic equations with these roots.

(i) 2α, 2β, 2γ (ii) α + 3, β + 3, γ + 3

(iii) 2 – α, 2 – β, 2 – γ (iv) 3α – 2, 3β – 2, 3γ – 2

7 The equation z3 + pz2 + 2pz + q = 0 has roots α, 2α, 4α. 

Find all the possible values of p, q, α.

8 The roots of z3 + pz2 + qz + r = 0 are α, –α, β, and r ≠ 0.

Show that r = pq, and find all three roots in terms of p and q.

9 The cubic equation 8x3 + px2 + qx + r = 0 has roots α, and β.

(i) Express p, q and r in terms of α and β.

(ii) Show that 2r2 – pr + 4q = 16.

(iii) Given that p = 6 and q = –23, find the two possible values of r and, in

each case, solve the equation 8x3 + 6x2 – 23x + r = 0.

[MEI]

10 Show that one root of az3 + bz2 + cz + d = 0 is the reciprocal of another root

if and only if a2 – d2 = ac – bd .

Verify that this condition is satisfied for the equation 21z3 – 16z2 – 95z + 42 = 0

and hence solve the equation.

11 Find a formula connecting a, b, c and d which is a necessary and sufficient

condition for the roots of the equation az3 + bz2 + cz + d = 0 to be in

geometric progression. 

Show that this condition is satisfied for the equation 8z3 – 52z2 + 78z – 27 = 0

and hence solve the equation.

1
––
2α
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● The remaining questions relate to enrichment material.

12 The roots of the cubic equation x3 – 5x2 – 6x – 4 = 0 are α, β, γ. 

(i) Write down the values of α + β + γ, αβ + βγ + γα and αβγ.

(ii) Find the value of α2 + β2 + γ2.

(iii) Show that (αβ)2 + (βγ)2 + (γα)2 = –4. Deduce that α, β, γ are not all real.

(iv) Find a cubic equation with integer coefficients whose roots are ,

and .

[MEI]

13 The cubic equation 16x3 + kx2 + 27 = 0 (where k is a real constant) has roots

α, β and γ. 

(i) Write down the values of βγ + γα + αβ and αβγ, and express k in terms of

α, β and γ.

(ii) For the case where there is a repeated root, say β = γ, solve the cubic

equation and find the value of k.

(iii) For the case k = 9, find a cubic equation with integer coefficients which

has these roots.

+ 1, + 1, + 1

[MEI]

Quartic equations

Quartic equations have four roots, denoted by α, β, γ and δ (delta, the fourth

letter of the Greek alphabet).

●? So far you have learnt two properties of the roots of quadratic equations, and

three properties of the roots of cubic equations. 

Predict the four properties of the roots α, β, γ, δ of the quartic equation 

az4 + bz3 + cz2 + dz + e = 0

As before, the quartic equation

az4 + bz3 + cz2 + dz + e = 0

can be written in factorised form as 

a(z – α)(z – β)(z – γ)(z – δ) = 0. 

This gives the identity

az4 + bz3 + cz2 + dz + e / a(z – α)(z – β)(z – γ)(z – δ). 

1
–
γ

1
–
β

1
–
α

αβ
––
γ

γα
––
β

βγ
––
α
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ACTIVITY 4.7 Multiply out the right-hand side of the identity above to show that 

az4 + bz3 + cz2 + dz + e / az4 – a(α + β + γ + δ)z3

+ a(αβ + αγ + αδ + βγ + βδ + γα)z2 – a(αβγ + βγδ + γδα + δαβ)z + aαβγδ

Equating coefficients shows that:

∑α = α + β + γ + δ = –

∑αβ = αβ + αγ + αδ + βγ + βδ + γδ = 

∑αβγ = αβγ + βγδ + γδα + δαβ = –

αβγδ = 

EXAMPLE 4.9 The roots of the quartic equation 4z4 + pz3 + qz2 – z + 3 = 0 are α, –α, α + λ, α – λ,

where α and λ are real numbers.

(i) Express p and q in terms of α and λ.

(ii) Show that α = , and find the values of p and q. 

Give the roots of the quartic equation.

SOLUTION

(i) ∑α = α – α + α + λ + α – λ = –

⇒ 2α = –

⇒ p = –8α

∑αβ = –α2 + α(α + λ) + α(α – λ) – α(α + λ) – α(α – λ) + (α + λ)(α – λ)= 

⇒ –λ2 = 

⇒ q = –4λ2

(ii) ∑αβγ = –α2(α + λ) – α(α + λ)(α – λ) + α(α + λ)(α – λ) – α2(α – λ) = 

⇒ –2α3 = 

⇒ α3 = –

⇒ α = –

p = –8α = –8 × – = 4

αβγδ = –α2(α + λ)(α – λ) = 

⇒ –α2(α2 – λ2) = 

⇒ – ( – λ2) = 

⇒ – λ2 = –3

⇒ λ2 = 

q = –4λ2 = –4 × = –13

The roots of the equation are , – , – + 13, – – 13.1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

13––
4

13––
4

1–
4

3–
4

1–
4

1–
4

3–
4

3–
4

1–
2

1–
2

1–
8

1–
4

1–
4

q
–
4

q
–
4

p
–
4

p
–
4

1–
2

e–a

d–a

c–a

b–a The sum of the individual roots

The sum of the product of roots in pairs

The sum of the product of roots in threes

The product of the roots

Use the sum of the
individual roots to find

an expression for p.

Use the sum of the 
product of the roots in pairs to

find an expression for q.

Use the sum of the product of 
the roots in threes to find 

α(λ cancels out) and hence find p, 
using your answer to part (i).

Use the sum of the product 
of the roots and the value for α to
find λ, and hence find q, using

your answer to part (i).

Substitute the values
for α and λ to give

the roots.
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● Quintic equations

●? Predict the five properties of the roots α, β, γ, δ, ε of the quintic 

az5 + bz4 + cz3 + dz2 + ez + f = 0 . 

EXERCISE 4D 1 The roots of 2z4 + 3z3 + 6z2 – 5z + 4 = 0 are α, β, γ, δ. 

Write down the values of the following.

(i) ∑α (ii) ∑αβ (iii) ∑αβγ (iv) αβγδ

2 Find quartic equations (with integer coefficients) with these roots.

(i) 1, –1, 2, 4 (ii) 0, 1.5, –2.5, –4

(iii) 1.5 (repeated), –3 (repeated) (iv) 1, –3, 1 + j, 1 – j

3 The roots of the quartic equation 2z4 + 4z3 – 3z2 – z + 6 = 0 are α, β, γ, δ.

Find quartic equations with these roots.

(i) 2α, 2β, 2γ, 2δ (ii) α – 1, β – 1, γ – 1, δ – 1

4 The roots of the quartic equation x4 + 8x3 + 20x2 + 16x + 4 = 0 are α, β, γ
and δ.

(i) By making a suitable substitution, find a quartic equation with these roots.

α + 2, β + 2, γ + 2 and δ + 2

(ii) Solve the equation found in part (i), and hence find the values of α, β, γ and δ.

[MEI, part]

5 The quartic equation 9x4 + px3 – 32x + q = 0, where p and q are real, has roots

α, 3α, β, –β.

(i) By considering the coefficients of x2 and x, find α and β, where β � 0.

(ii) Show that p = 24, and find the value of q.

(iii) By making the substitution y = x – k, for a suitable value of k, find a cubic

equation with integer coefficients which has roots –2α, β – 3α, –β – 3α.

[MEI]
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KEY POINTS

1 An identity is true for all values of the variable(s); an equation is true only

for certain values.

2 If α and β are the roots of the quadratic equation az2 + bz + c = 0, then

α + β = – ,

αβ = .

3 If α, β and γ are the roots of the cubic equation az3 + bz2+ cz + d = 0, then

∑α = α + β + γ = – ,

∑αβ = αβ + βγ + γα = ,

αβγ = – .

4 If α, β, γ and δ are the roots of the quartic equation 

az4 + bz3 + cz2 + dz + e = 0, then

∑α = α + β + γ + δ = – ,

∑αβ = αβ + αγ + βδ + βγ + γδ + δα = ,

∑αβγ = αβγ + βγδ + γδα + δαβ = – ,

αβγδ = .e–a

d–a

c–a

b–a

d–a

c–a

b–a

c–a

b–a



Induction and series

The distance does not matter; it is only the first step that is difficult. 

Marquise du Deffand (1763)

Induction in mathematics

This old woman lives in the mountains of 

Nepal.

It is her birthday and she says she is 100 years old.

No records were kept at the time of her birth.

When asked how she knows she is 100, she says

‘Because I was 99 last year’.

●? How do you know how old you are?

Can you be sure that the old woman really is 100?

ACTIVITY 5.1 Work out the first four terms of this pattern.

=

+ =

+ + =

…

Look carefully at your answers and predict the next two terms. Then check your

predictions.

Activity 5.1 illustrates one common way of making progress in mathematics.

Looking at a number of particular cases suggests a pattern, which can usually be

written algebraically to form a conjecture (i.e. a guess) about a more general result. 

The conjecture can then be tested in further particular cases. If you find a

counter-example (a case where the conjecture is not true) then the conjecture is

definitely disproved. If, on the other hand, the further cases agree with the

1––––
3 × 4

1––––
2 × 3

1––––
1 × 2

1––––
2 × 3

1––––
1 × 2

1––––
1 × 2
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conjecture you may feel that you are on the right lines, but you can never be

certain that trying another particular case might not reveal a counter-example:

the conjecture has been confirmed, but not proved.

Activity 5.1 involves the sum of a sequence of numbers. The nth term in the

sequence can be written as

. 

If there are n numbers in the sequence the sum can be written algebraically as

+ + + … + . 

The activity has shown that the conjecture

+ + + … + = 

is true for n = 1, 2, …, 6. You want to prove that it is true for all positive integers n.

It is not possible to prove this conjecture by deduction from known results. A

different approach is needed.

Proof by induction

First, assume that the conjecture is true for a particular integer, n = k say, so that 

+ + + … + = .

The idea is to use this result to show that the conjecture is also true for the next

integer, n = k + 1, i.e. that the sum of k + 1 terms is 

= .

The sum of k + 1 terms can be found by adding the (k + 1)th term, which is 

, to the sum of k terms.

+ + + … + + = +

= 

= 

= 

= 

which is the expected result.

k + 1––––
k + 2

(k + 1)2
–––––––––––
(k + 1)(k + 2)

k2 + 2k + 1
–––––––––––
(k + 1)(k + 2)

k(k + 2) + 1
–––––––––––
(k + 1)(k + 2)

1––––––––––––
(k + 1)(k + 2)

k––––
k + 1

1––––––––––––
(k + 1)(k + 2)

1–––––––
k(k + 1)

1–––– 
3 × 4

1–––– 
2 × 3

1––––
1 × 2

1––––––––––––
(k + 1)(k  + 2)

k + 1––––
k + 2

(k + 1)–––––––––
(k + 1) + 1

k––––
k + 1

1–––––––
k(k + 1)

1–––– 
3 × 4

1–––– 
2 × 3

1––––
1 × 2

n––––
n + 1

1–––––––
n(n + 1)

1––––
3 × 4

1––––
2 × 3

1––––
1 × 2

1–––––––
n(n + 1)

1––––
3 × 4

1––––
2 × 3

1––––
1 × 2

1–––––––
n(n + 1)
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We have now shown that if the conjecture is true for n = k, then it is also true for

n = k + 1.

We already know that the conjecture is true for n = 6, so, taking k = 6, it follows

that it is true for n = 7.

Now we know that the conjecture is true for n = 7, so, taking k = 7, it follows that

it is true for n = 8, and so on. By continuing like this, we can reach any positive

integer n, so we have proved that the conjecture is true for every positive integer.

This form of proof can be compared with the process of climbing a ladder: 

if we can 

1 reach the bottom rung 

and 

2 get from one rung to the next, 

then we can climb as far as we like up the ladder (figure 5.1).

The corresponding steps in the proof are

1 showing that the conjecture is true for n = 1 (though in fact you checked it up

to n = 6)

2 showing that if the conjecture is true for any particular value of n, n = k say,

then it is true for the next value, n = k + 1.

This method of proof is called proof by mathematical induction (or just proof by

induction).

The method of proof by induction can be summarised as follows.

To prove a result by induction you must take three steps.

Figure 5.1



Step 1 Prove that it is true for a starting value, such as n = 1.

Step 2 Prove that if it is true when n = k, then it is true when n = k + 1.

Step 3 Conclude the argument.

Step 1 is usually a simple verification whereas Step 2 can be quite complicated, so

there is a danger that you will concentrate on Step 2 and forget about Step 1 – but

it is no use being able to climb the ladder if you cannot reach the bottom rung!

ACTIVITY 5.2 A student is investigating the sum of the first n even numbers.

She writes

2 + 4 + 6 + … + 2n = (n + )2
.

(i) Prove that if this result is true when n = k then it is true when n = k + 1.

Explain why this result is not true for any positive integer n.

(ii) Find a conjecture for the sum of the first n even numbers for which Step 1 of

the proof is successful but Step 2 is not.

EXAMPLE 5.1 Prove that, for all positive integers n, 

12 + 22 + 32 + … + n2 = n(n + 1)(2n + 1).

SOLUTION

Step 1 When n = 1, L.H.S. = 12 = 1

R.H.S. = × 1 × 2 × 3 = 1.

Step 2 Assume that the result is true when n = k, so that

12 + 22 + 32 + … + k2 = k(k + 1)(2k + 1).

We want to prove that the result is true for n = k + 1, i.e. that

12 + 22 + 32 + … + k2 + (k + 1)2 = (k + 1)((k + 1) + 1)(2(k + 1) + 1)

= (k + 1)(k + 2)(2k + 3).

Using the assumed result for n = k gives

12 + 22 + 32 + … + k2 + (k + 1)2 = k(k + 1)(2k + 1) + (k + 1)2

= (k + 1)[k(2k + 1) + 6(k + 1)]

= (k + 1)(2k2 + k + 6k + 6)

= (k + 1)(2k2 + 7k + 6)

= (k + 1)(k + 2)(2k + 3).

Step 3 So if the result is true when n = k, then it is true when n = k + 1.

As it is true for n = 1, it is true for all n � 1 by induction.

1–
6

1–
6

1–
6

1–
6

1–
6

1–
6

1–
6

1–
6

1–
6

1–
6

1–
2
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Add (k + 1)2

to each side.

Take out = (k + 1) as
a factor – this is part of
the target expression.

1–
6
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Notation

There are a number of different notations which are commonly used in writing

down sequences and series.

The terms of a sequence are often written as a1, a2, a3,… or as u1, u2, u3,…

The general (kth) term of a sequence may be written as ak or uk. Sometimes r or i

are used instead of k.

The last term is usually written as an or un.

The sum Sn of the first n terms of a sequence can be written using the symbol ∑
(the Greek capital S, sigma).

Sn = a1 + a2 + … + an = ak

The numbers above and below the ∑ are the limits of the sum. They show that

the sum includes all the ak from a1 to an. The limits may be omitted if they are

obvious, so that you would just write ∑ak, or you might write ∑
k

ak (meaning the

sum of ak for all values of k).

EXERCISE 5A In questions 1 to 12, prove the result given by induction.

1 1 + 3 + 5 + … + (2n – 1) = n2

(This was the first example of proof by induction ever published, by

Francesco Maurolycus in 1575.)

2 1 + 2 + 3 + … + n = n(n + 1)

3 2 + 22 + 23 + … + 2n = 2(2n – 1)

4 k3 = n2(n + 1)2

5 (1 × 2) + (2 × 3) + (3 × 4) + … + n(n + 1) = n(n + 1)(n + 2)

6 xk = (x ≠ 1)

7 (1 × 2 × 3) + (2 × 3 × 4) + … + n(n + 1)(n + 2) = n(n + 1)(n + 2)(n + 3)

8 (3k + 1) = n(3n + 5)

9 + + + … + = 

10 + + … + = 

11 (1 – )(1 – )(1 – )…(1 – ) = for n � 2

12 1 × 1! + 2 × 2! + 3 × 3! + … + n × n! = (n + 1)! – 1

(Remember: n! means n(n – 1)(n – 2)…3 × 2 × 1.)

n + 1––––
2n

1––
n2

1––
42

1––
32

1––
22

n(n + 3)––––––––––––
4(n + 1)(n + 2)

1––––––––––––
n(n + 1)(n + 2)

1–––––––
2 × 3 × 4

1–––––––
1 × 2 × 3

n–––––
2n + 1

1––––––
4n2 – 1

1––
35

1––
15

1–
3

1–
2

n

∑
k=1

1–
4

1 – xn
–––––
1 – x

n–1

∑
k=0

1–
3

1–
4

n

∑
k=1

1–
2

n

∑
k =1
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More proofs by induction

So far you have used induction to prove a given expression for the sum of a series.

Here are some other examples of its use.

In Example 5.2, a sequence is given inductively, i.e. each term is defined by

relating it to the previous term.

EXAMPLE 5.2 A sequence is defined by un+1 = 4un – 3, u1 = 2.

Prove that un = 4n–1 + 1.

SOLUTION

Step 1 For n = 1, u1 = 40 + 1 = 1 + 1 = 2, so the result is true for n = 1.

Step 2 Assume that the result is true for n = k, so that uk = 4k–1 + 1.

We want to prove that it is true for n = k + 1, i.e. that uk+1 = 4uk + 1.

For n = k + 1, uk+1 = 4uk – 3

= 4(4k–1 + 1) – 3

= 4 × 4k–1 + 4 – 3

= 4k + 1

Step 3 So if the result is true for n = k, then it is true for n = k + 1.

Since it is true for n = 1, then it is true for all n � 1 by induction.

● Other applications

Although the method of proof by induction is often used in the context of the

sum of a series, it has other applications as well, as the following example shows.

EXAMPLE 5.3 Prove that un = 4n + 6n – 1 is divisible by 9 for all n � 1.

SOLUTION

Step 1 For n = 1, u1 = 4 + 6 – 1 = 9, so it is true when n = 1.

Step 2 We want to show that 

uk is divisible by 9 ⇒ uk+1 is divisible by 9.

Now uk+1 = 4k+1 + 6(k + 1) – 1

= 4 × 4k + 6k + 5

= 4(uk – 6k + 1) + 6k + 5

= 4uk – 18k + 9

= 4uk – 9(2k – 1)

Step 3 Therefore if uk is a multiple of 9 then so is uk+1.

Since u1 is a multiple of 9, un is a multiple of 9 for all n � 1.

Substituting 
4k = uk – 6k + 1.
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EXERCISE 5B 1 A sequence is defined by un+1 = 3un + 2, u1 = 2.

Prove by induction that un = 3n – 1.

2 A sequence is defined by un+1 = 2un –1, u1 = 2. 

Prove by induction that un = 2n–1 + 1.

3 A sequence is defined by un+1 = 4un – 6, u1 = 3. 

Prove by induction that  un = 4n–1 + 2.

4 A sequence is defined by un+1 = , u1 = 1. 

(i) Find the values of u2, u3 and u4.

(ii) Suggest a general formula for un, and prove your conjecture by induction.

5 A sequence of integers u1, u2, u3, … is defined by

u1 = 5 and un+1 = 3un – 2n for n � 1.

(i) Use this definition to find u2 and u3.

(ii) Prove by induction that un = 2n + 3n for all positive integers n.

[MEI, part]

6 A sequence u1, u2, u3, … is defined by

u1 = and un = un–1 + n2 for n � 2.

Prove by induction that un = 2n2 – 4n + 6 – ( )n
and for all positive integers n.

[MEI, part]

● The remaining questions relate to enrichment material.

7 Prove, using the method of mathematical induction, that 24n+1 + 3 is a

multiple of 5 for any positive integer n.

[MEI, part]

8 Prove that 11n+2 + 122n+1 is divisible by 133 for n � 0.

9 You are given the matrix A = ( ).  
(i) Calculate A2 and A3.

(ii) Show that the formula An = ( ) is consistent with the given

value of A and your calculations for n = 2 and n = 3.

(iii) Prove by induction that the formula for An is correct when n is a positive

integer.

[MEI, part]

1 – 2n –4n
n 1 + 2n

–1   –4
1    3

1–
2

1–
2

7–
2

un–––––
un + 1



Summation of finite series

The sum Sn of a finite series is found by adding together the first n terms of a

sequence. You may have already met these important examples in C2.

Arithmetic series: ak = a + (k – 1)d Sn = n[2a + (n – 1)d]

where d is the common difference

and a is the first term.

Geometric series: ak = ark–1 Sn = 

where r is the common ratio

and a is the first term.

If the sum approaches a finite number as n → ∞, the series is said to be convergent.

●? Explain why an arithmetic series can never be convergent (unless all its terms 

are zero).

For what values of r is a geometric series convergent?

As you have seen in the previous section, if you can guess what the sum of a series

is you can often prove it by mathematical induction. Here are some other ways of

dealing with finite sums. Some of these results may be familiar to you; the

important thing is to concentrate on the methods of obtaining them.

The method of differences

In some sequences, it is possible to express each term as the difference of

consecutive terms of another sequence, with the result that most of the terms

cancel out. This is called the method of differences, and is illustrated in the next

two examples.

EXAMPLE 5.4 (i) Show that – = .

(ii) Hence find + + + … + .

SOLUTION

(i) – = 

= 
1

––––––
r(r + 1)

r + 1 – r
––––––
r(r + 1)

1
––––
r + 1

1
–
r

1––––––
30 × 31

1––––
3 × 4

1––––
2 × 3

1––––
1 × 2

1
–––––––
r (r + 1)

1
––––
r + 1

1
–
r

a(1 – rn)
–––––––

1 – r

1–
2
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(ii) + + + … + = 

= ( – )
= 1 –

+ –

+ –

+ … …

+ –

+ –

= 1 – 

=

Notice that this result can easily be generalised for a sequence of any length. If the

sequence has n terms, then the terms would still cancel in pairs, leaving the first 

term, 1, and the last term, – . 

The sum of the terms would therefore be 

1 – = = .

This shows that as n → ∞, the sum approaches 1. So this series converges.

The cancelling of nearly all the terms is similar to the way in which the interior

sections of a collapsible telescope disappear when it is compressed, so a sum like

this is sometimes described as a telescoping sum.

The next example uses a rather more complicated telescoping sum.

EXAMPLE 5.5 (i) Show that – + = .

(ii) Hence find .

SOLUTION

(i) – + = 

= 

= 
r + 4

–––––––––––––
r(r + 1)(r + 2)

2r2 + 6r + 4 – 3r2 – 6r + r2 + r
––––––––––––––––––––––––

r(r + 1)(r + 2)

2(r + 1)(r + 2) – 3r(r + 2) + r(r +1)
––––––––––––––––––––––––––––

r(r + 1)(r + 2)
1

––––
r + 2

3
––––
r + 1

2
–
r

r + 4––––––––––––
r(r + 1)(r + 2)

n

∑
r=1

r + 4––––––––––––
r(r + 1)(r + 2)

1––––
r + 2

3––––
r + 1

2–
r

n
––––
n + 1

n + 1 – 1
–––––––

n + 1
1

–––––
n + 1

1
–––––
n + 1

30––
31

1––
31

1––
31

1––
30

1––
30

1––
29

1–
4

1–
3

1–
3

1–
2

1–
2

1
––––
r + 1

1
–
r

30

∑
r=1

1
––––––
r(r + 1)

30

∑
r=1

1––––––
30 × 31

1––––
3 × 4

1––––
2 × 3

1––––
1 × 2
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Everything in the
box cancels out in
pairs, leaving just
the first and last

terms. 
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(ii) = ( – + )
= 2 – + 

+   – + 

+    – + 

+  …  …

+ – + 

+ – + 

+ – + 

Most of the terms cancel, leaving

= 2 – + + – + 

= – + 

●? Show that the expression obtained in Example 5.5 part (ii) can be simplified to give 

.

Note

The terms which do not cancel form a symmetrical pattern, three at the start and

three at the end.

●? Explain how you can tell that this series converges. 

What is the limiting value of the series as n → ∞?

EXERCISE 5C 1 (i) Show that r2 – (r – 1)2 = 2r – 1.

(ii) Hence find 1 + 3 + 5 + … + (2n – 1).

2 (i) Show that (r + 1)2(r + 2) – r2(r + 1) = (r + 1)(3r + 2).

(ii) Hence find 2 × 5 + 3 × 8 + 4 × 11 + … + (n + 1)(3n + 2).

3 (i) Show that – = .

(ii) Hence find + + + … + .2
––––––
19 × 21

2
––––
5 × 7

2
––––
3 × 5

2
––––
1 × 3

2
––––––––––––
(2r – 1)(2r + 1)

1
–––––
2r + 1

1
–––––
2r – 1

n(3n + 7)
––––––––––––
2(n + 1)(n + 2)

1––––
n + 2

2––––
n + 1

3–
2

1––––
n + 2

3––––
n + 1

1––––
n + 1

2–
2

3–
2

r + 4–––––––––––––
r(r + 1)(r + 2)

n

∑
r=1

1––––
n + 2

3––––
n + 1

2–
n

1––––
n + 1

3–
n

2––––
n – 1

1–
n

3––––
n – 1

2––––
n – 2

1–
5

3–
4

2–
3

1–
4

3–
3

2–
2

1–
3

3–
2

1
––––
r + 2

3
––––
r + 1

2
–
r

n

∑
r=1

r + 4
–––––––––––––
r(r + 1)(r + 2)

n

∑
r=1

Everything in
here cancels.
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4 (i) Show that – = .

(ii) Hence find .

5 (i) Show that – = .

(ii) Hence find .

(iii) Does this series converge? Explain your answer.

6 (i) Show that – + – = 

(ii) Hence find .

7 (i) Show that – + = .

(ii) Hence find .

(iii) Does this series converge? Explain your answer.

8 (i) Show that – = .

(ii) Hence or otherwise find the sum of the first n terms of the series

+ + + +… .

[MEI, part]

In questions 9 to 11, you will prove three important results that will be needed in the

next section.

9 (i) Show that (2r + 1)2 – (2r – 1)2 = 8r.

(ii) Hence find 8r.

(iii) Deduce that r = n(n + 1).

10 (i) Show that (2r + 1)3 – (2r – 1)3 = 24r2 + 2.

(ii) Hence find (24r2 + 2).

(iii) Deduce that r2 = n(n + 1)(2n + 1).

(Hint: k = (k + k + k +…+ k) = kn for any constant k.)
n

∑
r =1

1–
6

n

∑
r =1

n

∑
r =1

1–
2

n

∑
r =1

n

∑
r=1

8
–––––––
4 × 5 × 6

7
–––––––
3 × 4 × 5

6
–––––––
2 × 3 × 4

5
–––––––
1 × 2 × 3

r + 4
––––––––––––
r(r + 1)(r + 2)

r + 3
–––––––––––
(r + 1)(r + 2)

r + 2
––––––
r(r + 1)

1
––––––––––––
r(r + 1)(r + 2) 

n

∑
r=1

1
––––––––––––
r(r + 1)(r + 2)

1
––––––
2(r + 2)

1
––––
r + 1

1
––
2r

r
––––––––––––––––
(r + 2)(r + 3)(r + 4)

12

∑
r=1

r
––––––––––––––––
(r + 2)(r + 3)(r + 4)

2
––––
r + 4

3
––––
r + 3

1
––––
r + 2

1
––––––
r(r + 2)

n

∑
r=1

1
––––––
r(r + 2)

1
––––––
2(r + 2)

1
––
2r

2r + 1
––––––––
r2(r + 1)2

n

∑
r=1

2r + 1
––––––––
r2(r + 1)2

1
––––––
(r + 1)2

1
––
r2
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11 (i) Show that (2r + 1)4 – (2r – 1)4 = 64r3 + 16r.

(ii) Hence find (64r3 + 16r).

(iii) Deduce that r3 = n2(n + 1)2.

(You will need to use the expression for r from question 9).

12 (i) Show that r(r + 1)(r + 2) – (r – 1)r(r + 1) = 3r(r + 1).

Hence find r(r + 1).

(ii) Show that r(r + 1)(r + 2)(r + 3) – (r – 1)r(r + 1)(r + 2) = 4r(r + 1)(r + 2).

Hence find r(r + 1)(r + 2).

(iii) Using the formula for r from question 9 and r(r + 1) and 

r(r + 1)(r + 2)  from parts (i) and (ii), make a conjecture about 

r(r + 1)(r + 2)…(r + k) and prove it using the method of differences.

Using standard results

In questions 9 to 11 of Exercise 5C you found these three important results.

r = n(n + 1) r2 = n(n + 1)(2n +1) r3 = n2(n + 1)2

●? Explain why 1 = n.

These results can be used to sum further series, as shown in the following examples.

EXAMPLE 5.6 Find (r2 + 2r – 1).

SOLUTION

(r2 + 2r – 1) = r2 + 2 r – 1

= n(n + 1)(2n + 1) + 2 × n(n + 1) – n

= n[(n + 1)(2n + 1) + 6(n + 1) – 6]

= n(2n2 + 3n + 1 + 6n + 6 – 6)

= n(2n2 + 9n + 1)1–
6

1–
6

1–
6

1–
2

1–
6

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1

1–
4

n

∑
r =1

1–
6

n

∑
r =1

1–
2

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1

1–
4

n

∑
r =1

n

∑
r =1

1 = n

n

∑
r=1
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It is easy to make mistakes in the algebra when simplifying an expression like this,

so it is a good idea to check the result for n = 1.

EXAMPLE 5.7 Find (1 × 3) + (2 × 4) + (3 × 5) + … + n(n + 2).

SOLUTION

This sum can be written in the form r(r + 2).

r(r + 2) = (r2 + 2r)

= r2 + 2 r

= n(n + 1)(2n + 1) + 2 × n(n + 1)

= n(n + 1)[2n + 1 + 6]

= n(n + 1)(2n + 7)

EXERCISE 5D 1 Find (2r – 1).

2 Find r(3r + 1).

3 Find (r + 1)r2.

4 Find (4r3 – 6r2 + 4r – 1).

5 Find (1 × 2) + (2 × 3) + (3 × 4) + … + n(n + 1).

6 Find (1 × 2 × 3) + (2 × 3 × 4) + (3 × 4 × 5) + … + n(n + 1)(n + 2).

7 Find r(3r + 2), giving your answer in a fully factorised form.

[MEI, part]

8 On a fruit stall a pile of oranges is arranged to form a truncated square pyramid. 

Each layer is a square, with the lengths of side of successive layers reducing by

one orange. 

The bottom layer measures 2n × 2n oranges, and there are n layers.

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1

1–
6

1–
6

1–
2

1–
6

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1

n

∑
r =1
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(i) Prove that the number of oranges used is

n(2n + 1)(7n + 1).

(ii) What is the greatest n which uses fewer than 1000 oranges?

9 (i) Prove by induction that 

(5r4 + r2) = n2(n + 1)2(2n + 1).

(ii) Using the result in part (i), and the formula for r2, show that 

r4 = n(n + 1)(2n + 1)(3n2 + 3n – 1).

[MEI, part]

10 (i) Prove, by induction or otherwise, that 

(3r5 + r3)  = n3(n + 1)3.

(ii) Using the result in part (i) and the formula for r3, show that

r5 = n2(n + 1)2(2n2 + 2n – 1).

[MEI]

11 Using the idea suggested in the diagram, or otherwise, prove that

1 × n + 2(n – 1) + 3(n – 2) + … + n × 1 = n(n + 1)(n + 2).1–
6

1––
12

n

∑
r=1

n

∑
r =1

1–
2

n

∑
r =1

1––
30

n

∑
r =1

n

∑
r =1

1–
2

n

∑
r =1

1–
6
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KEY POINTS

1 To prove by induction that a statement involving an integer n is true for all

n � n0, you need three steps.

Step 1 Prove that the result is true for n = n0.

Step 2 Prove that if the result is true for n = k then it is true for n = k + 1.

Step 3 Complete the argument.

2 Some series can be summed by using the method of differences. 

If the terms of the series can be written as the difference of two terms of

another series, then most of the terms cancel out. 

This is called a telescoping sum.

3 Some series can be summed using these standard results.

r = n(n + 1) r2 = n(n + 1)(2n + 1) r3 = n2(n + 1)21–
4

n

∑
r=1

1–
6

n

∑
r=1

1–
2

n

∑
r=1
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Chapter 1

●? (Page 1)

A shear parallel to the xy plane (each point is moved

parallel to the xy plane through a distance proportional

to its distance from the xy plane), followed by a rotation

of 90° anticlockwise about the z axis.

The shear can be represented by (x, y, z) → (x, y + z, z).

The rotation can be represented by (x, y, z) → (–y, x, z).

The whole transformation can be represented by 

(x, y, z) → (–y – z, x, z).

●? (Page 2)

There are no crossings from Folkestone to Zeebrugge.

●? (Page 2)

( )

●? (Page 3)

( )

●? (Page 3)

(i) Addition of elements in each position is

commutative, i.e. a + b = b + a.

(ii) Addition of elements in each position is associative,

i.e. a + (b + c) = (a + b) + c.

Exercise 1A (page 3)

1 (i) 2 × 2

(ii) 2 × 3

(iii) 3 × 2

2 (i) ( )
(ii) ( )
(iii) Not possible

(iv) ( )

(v) ( )
(vi) Not possible

3 (i) X = ( )
(ii) Y = ( )
(iii)

4 (i)

( ),     ( )
(ii)

( )
Rangers 1, United 1

City 2, United 1

Rangers 2, Town 1

5 (i) ( )
This matrix represents the number of jackets

in stock after all orders have been dispatched.

The negative element shows that there were

not enough of one type of jacket in stock to

meet all the orders.

(ii) ( )20   13   17   20
15   19   20   12
19   10   14     8

15     3     7   15
5     9   15   –3

19   10     9     3

C   1   0   0   2   1
R   1   1   0   3   2
T   0   0   1   1   2
U  0   1   1   2   3  

C   3   1   1   10     7
R   0   0   4     2   10
T   3   1   1   11     8
U  1   2   1     8     6  

C   1   0   1   4   4
R   0   0   1   0   2
T   1   1   0   7   5
U  0   1   0   3   3  

P

R
S

Q

2 2

1

2

2

1

0   0   2   2
1   0   0   0
2   0   0   1
0   0   2   0   

0   2   1   0
1   0   2   1
0   2   0   2
1   0   1   0

17   –6
–6   –7

–22   20

–6       9
3   –12

5   –5   5
2   –2   2

–1     5
4   –5

4   3   2
2   3   1

10   20   10
0   20   10

Answers



(iii) ( )
Probably not very realistic, as a week is quite a

short time.

●? (Page 8)

a = 0, b = 1, c = –1, d = 0

Activity 1.1 (Page 8)

After the reflection P′ = (0, 1), Q′ = (0, 2), R′ = (–1, 2), 

S′ = (–1, 1).

{
The matrix for reflection in the y axis is ( ).
After the enlargement P′ = (0, 2), Q′ = (0, 4), R′ = (2, 4),

S′ = (2, 2). 

{
The matrix for enlargement scale factor 2, centre O, is

( ).

Activity 1.2 (Page 10)

( ) transforms all points on to the x axis.

( ) transforms all points on to the y axis.

●? (Page 10)

The image of the origin under a translation is not the

origin.

●? (Page 11)

( )

Activity 1.3 (Page 12)

(i) For angles between 90° and 180°, cos θ is negative

and sin θ is positive.

(ii) For angles between 180° and 270°, cos θ is negative

and sin θ is negative.

(iii) For angles between 270° and 360°, cos θ is positive

and sin θ is negative.

Exercise 1B (Page 13)

1 (i) (a)

(b) A′ = (3, 6), B′ = (0, 6)

(c) x′ = 3x, y′ = 3y

(d) ( )
(ii) (a)

(b) A′ = (1, –2), B′ = (0, –2)

(c) x′ = x, y′ = –y

(d) ( )
(iii) (a)

(b) A′ = (–2, –1), B′ = (–2, 0)

(c) x′ = –y, y′ = –x

(d) ( )0   –1
–1  0

O 1 2 3

1

2

3

y

x

A′

B′

–1–2–3

–1

–2

–3

1     0
0   –1

O 1 2 3

1

2

3

y

x

A′
B′

–1–2–3

–1

–2

–3

3   0
0   3

O 1 2 3

1

2

3

y

x

A′
B′

4

5

6

4 5 6

cos θ sin θ
–sin θ cos θ

0   0
0   1

1   0
0   0

2   0
0   2

x′ = 2x
y′ = 2y

–1   0
0  1

x′ = –x
y′ = y

12   30   18     0
6   18   24   36

30     0   12   18
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(iv) (a)

(b) A′ = (2, –1), B′ = (2, 0)

(c) x′ = y, y′ = –x

(d) ( )
(v) (a)

(b) A′ = (3, 1), B′ = (0, 1)

(c) x′ = 3x, y′ = y

(d) ( )
2 x′ = x cos θ – y sin θ

y′ = x sin θ + y cos θ

A′ = (0.256, 2.221), B′ = (–0.684, 1.879)

3 (i) Rotation of 60° anticlockwise about the origin

(ii) Rotation of 55° anticlockwise about the origin

(iii) Rotation of 135° clockwise about the origin

(iv) Rotation of 150° anticlockwise about the origin

4 (i) (a)

(b) A′ = (–1, 2), B′ = (0, 2)

(c) Reflection in the y axis

(ii) (a)

(b) A′ = (2, 6), B′ = (0, 6)

(c) Two-way stretch, ×2 horizontally, ×3

vertically

(iii) (a)

(b) A′ = ( , 1), B′ = (0, 1)

(c) Enlargement, centre O, scale factor 

(iv) (a)

(b) A′ = (7, 2), B′ = (6, 2)

(c) Shear parallel to x axis

O 1 2 3

1

2

3

y

x

A′B′

4 5 6

–1

–2

–3

7

1–
2

1–
2

O 1 2 3

1

2

3

y

x

A′
B′

–1–2–3

–1

–2

–3

O 1 2 3

1

2

3

y

x

A′
B′

4

5

6

–1–2–3

O 1 2 3

1

2

3

y

x

A′
B′

–1–2–3

–1

–2

–3

1–
2

3     0
0   

1–
2

O 1 2 3

1

2

3

y

x

A′
B′

–1–2–3

–1

–2

–3

0   1
–1  0

O 1 2 3

1

2

3

y

x

A′

B′
–1–2–3

–1

–2

–3



(v) (a)

(b) A′ = (–1, –2), B′ = (0, –2)

(c) Rotation 180° about O

(vi) (a)

(b) A′ = (–1, 2), B′ = (–1.6, 1.2)

(c) Rotation 53.1° anticlockwise about O

5 A′ = (4, 5), B′ = (7, 9), C′ = (3, 4)

6 (x, x)

( )
7 (i) ( )

(ii) ( )
(iii) ( )

8 (i) Rotation 90° clockwise about x axis

(ii) Reflection in plane z = 0

(iii) Three-way stretch, ×2 in x direction, ×3 in 

y direction, × in z direction

Activity 1.4 (Page 16)

( )( ) = ( )
A′ = (–1.2, 1.6), B′ = (–0.4, 2.2), C′ = (0.2, 1.4), D′ = (0.8, 0.6)

The points are correctly plotted.

●? (Page 18)

BA, AC, BC and CB exist.

Activity 1.5 (Page 19)

(i) PQ = ( )
(ii) (PQ)R = ( )
(iii) QR = ( )
(iv) P(QR) = ( )
(PQ)R = P(QR) so matrix multiplication is associative.

Activity 1.6 (Page 19)

(i) P(Q + R) = ( )
(ii) PQ + PR = ( )
(iii) (P + Q)R = ( )
(iv) PR + QR = ( )
P(Q + R) = PQ + PR and (P + Q)R = PR + QR

so matrix multiplication is distributive over matrix

addition.

Activity 1.7 (Page 20)

For M = ( ),

I3M = ( )( ) = ( ) = M

MI3 = ( )( ) = ( ) = M

●? (Page 20)

Pre- and post-multiplying would give matrices of

different orders.

a   d   g
b   e   h
c   f  i

1   0   0
0   1   0
0   0   1

a   d   g
b   e   h
c   f  i

a   d   g
b   e   h
c   f  i

a   d   g
b   e   h
c   f  i

1   0   0
0   1   0
0   0   1

a   d   g
b   e   h
c   f  i

ai + cj + ei + gj   ak + cl + ek + gl
bi + dj + fi + hj   bk + dl + fk + hl

(a + e)i + (c + g)j   (a + e)k + (c + g)l
(b + f )i + (d + h)j   (b + f )k + (d + h)l

ae + cf + ai + cj   ag + ch + ak + cl
be + df + bi + dj   bg + dh + bk + dl

a(e + i) + c(f + j) a(g + k) + c(h + l)
b(e + i) + d(f + j) b(g + k) + d(h + l)

aei + agj + cfi + chj   aek + agl + cfk + chl
bei + bgj + dfi + dhj   bek + bgl + dfk + dhl

ei + gj   ek + gl
fi + hj   fk + hl

aei + cfi + agj + chj   aek + cfk + agl + chl
bei + dfi + bgj + dhj   bek + dfk + bgl + dhl

ae + cf    ag + ch
be + df   bg + dh

–1.2   –0.4   0.2   0.8
1.6    2.2 1.4 0.6

0   1   1   1
2   2   1   0

0.8   –0.6
0.6     0.8

1–
2

–1   0   0
0   1   0
0   0   1

–1     0   0
0   –1 0
0     0   1

3   0   0
0   3   0
0   0   3

1  0
1  0

O 1 2 3

1

2

3

y

x

A′

B′

–1–2–3

–1

–2

–3

O 1 2 3

1

2

3

y

x

A′
B′

–1–2–3

–1

–2

–3
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Exercise 1C (Page 20)
1 (i) ( )

(ii) Not possible

(iii) ( )
(iv) ( )
(v) ( )
(vi) Not possible

(vii) Not possible

(viii) ( )
(ix) ( )
(x) ( )
(xi) Not possible

(xii) ( )
2 AB = ( ), BA = ( ), so AB ≠ BA.

AD cannot be calculated, DA = ( ), so AD ≠ DA.

Therefore matrix multiplication is not commutative.

3 A(CF) = (AC)F = ( )
4 (i) (1, 0), (1, 1), (2, 1), (2, 2), (1, 2)

( )
(ii) ( )
(iii)

Reflection in the line y = 2x

5 (i) (1, 0), (1, 1), (–1, 1), (–1, 0)

( )
(ii) ( )
(iii)

Shear parallel to the y axis

6 (iii) M2 = ( ) 
(iv) Enlargement centre O scale factor 5

7 (i) D = (1   1)

(ii) N = ( )
(iii) (28   21)SN

8 (i) M = ( ) 
(ii) M2 = ( ) 

M2 represents the number of two-stage routes

between each pair of resorts.

(iii) M3 would represent the number of three-stage

routes between each pair of resorts.

9 (i) As0 = ( )
(ii) B = ( )
(iii) M = ( ), Ms0 = ( )
(iv) M2 = ( ), s4 = ( )c

a
b

0   0   1
1   0   0
0   1   0

b
c
a

0   1   0
0   0   1
1   0   0

1   0   0
0   0   1
0   1   0

b
a
c

4   3   3   4
2   2   2   2
2   1   5   0
1   1   0   2

1   1   2   0
1   0   1   0
1   1   0   2
0   0   1   0

1
1
1
1
1

5   0
0   5

O–1–2 1 2

1

2

y

x

3

–1

–2

1   1   –1   –1
2   3   –1   –2

1   1   –1   –1
0   1     1   0

2

1

O 1 2

y

x–1–2

3

–0.6   0.2   –0.4   0.4   1
0.8   1.4    2.2   2.8   2

1   1   2   2   1
0   1   1   2   2

52   225     49
128   420   –24

17   19  
21     7
–1   –7

5   25
16   22

–7   26
2   34

11     7
14   18

28   –18
26       2
16     25

26   32
5   –5

13   21

55   89     3
4   19   10

23   54   41

26    37   16
14    21   28
–8  –11     2

31     0
65   18

29   40   –5
29   41   13

–7   26
2   34
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(v) M3 = ( )
At Stage 6 the strands are back to their original

order.

●? (Page 24)

Reflection in the line y = x

Activity 1.9 (Page 24)

(i) p′ = ( )
(ii) p′′ = ( )
(iii) U = ( )

U(p) is represented by the matrix

( ) = p′′.

●? (Page 25)

QR represents ‘carry out transformation R followed by

transformation Q’. 

P(QR) represents ‘carry out QR, followed by P’, i.e. ‘carry

out R, followed by Q, followed by P’.

PQ represents ‘carry out Q, followed by P’. 

(PQ)R represents ‘carry out R, followed by PQ’, i.e. ‘carry

out R, followed by Q, followed by P’. 

Hence P(QR) = (PQ)R.

Activity 1.10 (Page 25)

(i) A = ( ), B = ( )
(ii) BA = ( )
(iii) C = ( )
(iv) sin (α + β) = sin α cos β + cos α sin β

cos (α + β) = cos α cos β – sin α sin β

(v) Rotation through angle α followed by rotation

through angle β has the same effect as rotation

through angle β followed by rotation through angle α.

(vi) D = ( )
AD = ( )
sin (α – β) = sin α cos β – cos α sin β

cos (α – β) = cos α cos β + sin α sin β

Exercise 1D (Page 25)

1 (i) Y = ( ), Q = ( )
(ii) QY = ( ), reflection in the line y = –x

(iii)

(iv) YQ = ( ), reflection in the line y = x

(v)

2 (i) R = ( ), T = ( )
(ii) RT = ( ), reflection in the x axis

(iii)

(iv) TR =  ( ), reflection in the y axis

(v)
R T

–1   0
0   1

T R

1     0
0   –1

0   1
1   0

0   1
–1   0

Q Y

0   1
1   0

Y Q

0   –1
–1    0

0   –1
1    0

–1   0
0   1

cosα cosβ + sinα sinβ cosα sinβ – sinα cosβ
sinα cosβ – cosα sinβ –sinα sinβ + cosα cosβ

cos β sin β
–sin β cos β

cos (α + β)   –sin (α + β) 
sin (α + β)    cos (α + β)

cosαcosβ – sinα sinβ –cosα sinβ – sinαcosβ
sinαcosβ + cosα sinβ –sinα sinβ + cosαcosβ

cos β –sin β
sin β cos β

cos α –sin α
sin α cos α

apx + brx + cpy + dry
aqx + bsx + cqy + dsy

ap + br   cp + dr
aq + bs   cq + ds

apx + cpy + brx + dry
aqx + cqy + bsx + dsy

ax + cy
bx + dy

1   0   0
0   1   0
0   0   1
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3 (i) X = ( ), Y = ( )
(ii) XY = ( ), rotation of 180° about O

(iii) YX = ( )
(iv) Reflecting in both axes in either order results

in a rotation of 180° about O.

4 (i) S = ( ), U = ( )
(ii) SU = ( ), reflection in the line y = x

(iii) US = ( )
(iv) Rotation through 180° and reflection in the

line y = –x, in either order, results in a

reflection in the line y = x.

5 (i) ( )
(ii) (20, –18)

6 (i) Rotating through 25° followed by rotating

through 40° has the same effect as  rotating

through 40° followed by rotating through 25°.

(ii) R1 = ( ), R2 = ( )
R1R2 = ( )

(iii) Rotation through 65° anticlockwise about O

7 (i) ( )
1    0

(ii) ( )– 1

1        –R1
(iii) ( )– + 1

(iv) No

–
8 (i) P = ( ), Q = ( )–

–
(ii) (              ), 

rotation through 60°
anticlockwise about O

(iii) (              ), 
rotation through 60°

–
clockwise about O

–
9 (i) (              )

–
(ii) (              )
(iii) ( ) , reflection in the line y = x

10 A second reflection in the same line reflects the

image back on to the original figure.

–

11 (i) A = ( ), B = ( ) , C = ( )–

(ii) S = ( )
(iii) One-way stretch, scale factor , parallel to 

the line y = x

–( )–

●? (Page 28)

QQ–1 = ( ), Q–1Q = ( )
Rotation of 90° clockwise followed by rotation of 90°

anticlockwise returns the shape to its original position.

Rotation of 90° anticlockwise followed by rotation of 90°

clockwise has the same effect.

Consequently, QQ–1 is equal to Q–1Q.

Activity 1.11 (Page 28)

The product of a matrix with its inverse is always the

identity matrix I.

1   0
0   1

1   0
0   1

21––
25

8––
25

8––
25

9––
25

1–
2

1–
5

9–
5

8–
5

8–
5

21––
5

2––
5

1––
5

2––
5

1––
5

5   0
0   1

1––
5

2––
5

1––
5

2––
5

0   1
1   0

1–
2

3––
2

3––
2

1–
2

3––
2

1–
2

1–
2

3––
2

1–
2

3––
2

3––
2

1–
2

1–
2

3––
2

3––
2

1–
2

1–
2

3––
2

1–
2

3––
2

3––
2

1–
2

3––
2

1–
2

R1––
R2

1––
R2

1––
R2

1 –R
1

0      1

0.423   –0.906
0.906     0.423

cos 40   –sin 40
sin 40    cos 40

cos 25   –sin 25
sin 25    cos 25

8   –4
–3   12

0   1
1   0

0   1
1   0

0   –1
–1     0

–1     0
0   –1

–1     0
0   –1

–1     0
0   –1

–1   0
0   1

1     0
0   –1
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Activity 1.12 (Page 28)

w = , x = –

4y + 2z = 0 } ⇒ y = –1, z = 2
5y + 3z = 1 

–1
M–1 = ( )– 2

aw + cx = 1} ⇒ w = , x = 
bw + dx = 0 

ay + cz = 0 } ⇒ y = , z = 
by + dz = 1 

Activity 1.13 (Page 29)

(ii) M–1 = ( )

●? (Page 30)

Undo the reflection first by doing the same reflection,

and then undo the rotation by doing the same rotation in

the opposite direction.

(MN)–1 = N–1M–1 (i.e. undo ‘N followed by M’ by

‘undoing M, then undoing N’).

Activity 1.14 (Page 30)

(AB)(B–1A–1) = A(BB–1)A–1 = AIA–1 = AA–1 = I

So the inverse of AB is B–1A–1, i.e. (AB)–1 = B–1A–1.

Exercise 1E (Page 30)

–1 (i) ( )–3      2

–(ii) (                )– –

(iii) Not possible

1   –2(iv) ( )–

(v) (             )–

(vi) ( )
(vii) Not possible

12 –(viii) ( )–4      2

(ix) ( ) provided eh ≠ fg

2 k = 2 or 3

2 – –3 (i) (                ) (ii) (               )–3 –

(iii) ( ) (iv) ( )
(v) ( ) (vi) ( )
(BA)–1 = A–1B–1 and (AB)–1 = B–1A–1.

4 (i) (3, 1), (1, 1) (–6, –2)

(ii) Area of T′ : area of T = 2 : 1

det M = 2

–(iii) (               )–

5 M2 = (a + d)M

Mn = (a + d)n–1M

6 (ii) (a) ( )
(b) ( )
(c) ( )
(d) ( )
(e) ( )1   –7        10

–3   22     –32
–11   81   –117

1   0   0
–3   1  0

–11   4   1

1   –7   10
0     1   –2
0     0     1

1   a + 7   b + 7c + 4
0      1           c + 2
0     0              1

18   –9   4
1 –7   2

–1   –4   1

3–
2

1–
2

1–
2

1–
2

y

O

1

2 4–2–4–6

T T′

x

–1

–2

2.6   –2.1
–2.8     2.3

1.1   –2.4
–1.7    3.8

2.6   –2.1
–2.8     2.3

1.1   –2.4
–1.7    3.8

4–
5

1–
5

5–
2

3–
5

2–
5

3–
2

h   –f
–g    e

1
––––––
eh – fg

9–
2

7   –4
–5     3

3–
5

2–
5

1–
5

1–
5

5–
3

2–
3

1–
4

1–
6

1–
8

1––
12

3–
2

5–
2

d   –c
–b    a

1
––––––
ad – bc

a
––––––
ad – bc

–c
––––––
ad – bc

–b
––––––
ad – bc

d
––––––
ad – bc

5–
2

3–
2

5–
2

3–
2
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Activity 1.15 (Page 31)

(i) Area of image = 5 square units

det T = 5

(ii) Area of image = 2 square units

det R = –2

(iii) The numerical value of the determinant is equal to

the area of the image.

Activity 1.16 (Page 32)

I′ = (a, b), P′ = (a + c, b + d), J′ = (c, d)

Area OI′P′J′ = (a + c)(b + d) – ab – bc – cd – cd – 

bc – ab

= ab + ad + bc + cd – ab – bc – cd – cd –

bc – ab

= ad – bc

●? (Page 33)

The area of any plane shape can be found as accurately as

you want as the sum of a number of sufficiently small

squares. As the area scale factor of each small square is

equal to the determinant of the matrix, then the area

scale factor of the whole shape is also equal to the

determinant of the matrix.

Activity 1.17 (Page 33)

Reflection in the x axis is represented by ( ) which

has determinant –1.

Reflection in the y axis is represented by ( ) which

has determinant –1.

Reflection in the line y = x is represented by ( ) which

has determinant –1.

Reflection in the line y = –x is represented by ( )
which has determinant –1.

Activity 1.18 (Page 33)

(i) det T = 0

(ii) The image points are (0, 0), (24, 12), (36, 18) and (12, 6).

(iv) The image points always lie on a straight line.

●? (Page 34)

Every point is mapped to the origin.

Activity 1.19 (Page 34)

( ) = ( )( ) = ( )
x′ = ax + cy ⇒ bx′ = abx + bcy

y′ = bx + dy ⇒ ay′ = abx + ady

Subtracting: bx′ – ay′ = (bc – ad)y = 0

So all image points lie on the line bx – ay = 0.

Exercise 1F (Page 35)

1 (i) 10, non–singular

(ii) 0, singular

(iii) 0, singular

(iv) 7, non–singular

2 (i) det M = –2, det N = 7

(ii) MN = ( ), det MN = –14

(iii) Applying M gives an area scale factor of 7,

applying N gives an area scale factor of –2.

Applying N followed by M therefore gives an

area scale factor of –14, so det MN = –14.

3 ad = 1

4 ( ); determinant = 1 × 1 – k × 0 = 1 so the shear 

preserves area.

5 (i) 150 square units

(ii) (             )
– –

(iii) ( )–

– –

(iv) ( )
6 (iii) x + 2y = 5

7 (i) ( )
(iii) (3, 9)

1   2
3   6

2––––
15   2

1––––
15   2

1–––
3   2

1–––
3   2

1––
2

1––
2

1––
2

1––
2

7––
30

2––
15

1––
10

1–
5

1   k
0   1

9   13
8   10

ax + cy
bx + dy

x
y

a   c
b   d

x′
y′

0   –1
–1     0

0   1
1   0

–1   0
0   1

1     0
0   –1

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2

1–
2



8 (i) y = 3x – 3s + t

(ii) ( s – t, s – t)
–(iii) (             )–

9 (i) I′ = ( , ),

J′ = ( , )

(ii) (                                 )
Activity 1.20 (Page 39)

(i) ( ), x = 3, y = –1, z = –2

(ii) The calculator gives an error. This is because the 

determinant of the matrix is zero.

The equations give a line of solution points, which 

can be expressed as x = λ, y = 5λ – 13, z = 8λ – 23.

(iii) The equations are inconsistent. There are no 

solutions.

●? (Page 39)

In part (i), the equations have a unique solution. The

equations represent three planes all meeting at a single

point.

In part (ii), the equations have a line of solution points.

The equations represent three planes with a line of

common points.

In part (iii), the equations have no solutions. The

equations represent three planes which do not all meet at

any point.

Exercise 1G (Page 39)

– (ii) ( ) = ( )1 (i) (            )
2 (i) x = 1, y = 1 (ii) x = 2, y = –1

(iii) x = 2, y = 3 (iv) x = 4, y = 1.5

3 (i) Consistent: unique solution x = 6.5, y = –0.5.

Two lines cross once.

(ii) Inconsistent: parallel lines.

(iii) Consistent: x = λ, y = 2λ – 4.

Lines coincide.

(iv) Inconsistent: parallel lines.

4 k = 4: x = λ, y = – λ

k = –4: no solution

5 (i) AB = ( )
A–1 = ( ), for k ≠ 1.

(ii) (a) x = 6m – 4, y = 7m – 8, z = –2m + 4

(b) No solution

(c) x = λ, y = 2λ – 10, z = 8 – λ

6 (i) ( )
(ii) k = –2a

(iii) B–1 = ( )
(iv) x = , y = , z = 

(v) ( )
7 (i) ( )

–1    13  –8(ii)

( – )– –

x = –7, y = 5, z = 0

(iii) x = 3 – 2t, y = t, z = 5 – t

●? (Page 41)

In a reflection, all points on the mirror line map to

themselves.

In a rotation, the centre of rotation maps to itself.

13––
2

21––
2

1–
2

7–
2

11––
2

1–
2

2   0   6 – 2k
0   2  k – 3
0   0  5 – k

6 + 4a 0               0
0         6 + 4a 0

–3k – 6a –3k – 6a –2k + 6

1
––––––––––––
(6 – 2k)(6 + 4a)

3
–––––
3 + 2a

–2a
–––––
3 + 2a

6
–––––
3 + 2a

1     –2     0
0       2   –2

–  k 0     31–
2

1
–––––
6 – 2k

6 – 2k 0          0
0          6 – 2k 0

6a + 3k 6a + 3k 6 + 4a

–1    3k + 8    4k + 10
–2   2k + 20   3k + 25
1       –11          –14

1
––––
k – 1

k – 1      0         0
0      k – 1      0
0         0      k – 1

1–
2

3–
4

2–
5

1–
5

2
–1

x
y

3–
5

1–
5

6   –1   –8
–5     1     7
–7     1   10

1 + m2 – km––––––––––
1 + m2

km2
–––––
1 + m2

–k–––––
1 + m2

1 + m2 + km––––––––––
1 + m2

1 + m2 – km–––––––––––
1 + m2

–k––––––
1 + m2

km2
––––––
1 + m2

1 + m2 + km–––––––––––
1 + m2

1–
8

3–
8

3–
8

9–
8

1–
8

3–
8

3–
8

9–
8
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●? (Page 41)

In transformations which can be represented by a matrix,

the origin is always mapped to itself, so the origin is an

invariant point.

●? (Page 43)

(i) All lines of the form y = mx (straight lines through

the origin)

(ii) All lines of the form y = mx (straight lines through

the origin)

(iii) None

(iv) The line y = x and all lines of the form y = –x + c

Exercise 1H (Page 43)

1 (i) (λ, –λ)

(ii) (0, 0)

(iii) (2λ, λ)

(iv) (0, 0)

(v) (λ, –3λ)

(vi) (λ, λ)

4 (i) Any point of the form (λ, 2λ).

The mirror line is y = 2x.

(ii) (c) a = –2b

Chapter 2

Activity 2.1 (Page 47)

Activity 2.2 (Page 47)

(i) positive integer

(ii) rational number

(iii) irrational number

(iv) negative integer

(v) zero, negative integer

(vi) no real number is possible

Activity 2.3 (Page 48)

z = 3 – 7j ⇒ z2 – 6z + 58 = (3 – 7j)2 – 6(3 – 7j) + 58

= 9 – 42j + 49j2 – 18 + 42j + 58

= 9 – 42j – 49 – 18 + 42j + 58

= 0

●? (Page 49)

j3 = –j, j4 = 1, j5 = j

All numbers of the form j4n are equal to 1.

All numbers of the form j4n+1 are equal to j.

All numbers of the form j4n+2 are equal to –1.

All numbers of the form j4n+3 are equal to –j.

Activity 2.4 (Page 49)

(i) (a) 6 (b) 2 (c) 34 (d) 5

They are all real.

(ii) z + z* = (x + yj) + (x – yj) = 2x

zz* = (x + yj)(x – yj) = x2 – xyj + xyj – y2j2 = x2 + y2

These are real for any real values of x and y.

Exercise 2A (Page 50)

1 (i) 14 + 10j

(ii) 5 + 2j

(iii) –3 + 4j

(iv) –1 + j

(v) 21

(vi) 12 + 21j

(vii) 3 + 29j

(viii) 14 + 5j

(ix) 40 + 42j

(x) 100

(xi) 43 + 76j

(xii) –9 + 46j

0 3–1

355
113–1.4142–   2

Negative integersPositive integers

Rational numbers

zero

Irrational numbers

Real numbers

–13

–1.4142 355
113

–    2

3–
2
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2 (i) –1 ± j

(ii) 1 ± 2j

(iii) 2 ± 3j

(iv) –3 ± 5j

(v) ± 2j

(vi) –2 ± 2j

3 (i) 2

(ii) –4

(iii) 2 – 3j

(iv) 6 + 4j

(v) 8 + j

(vi) –4 – 7j

(vii) 0

(viii) 0

(ix) –39

(x) –46 – 9j

(xi) –46 – 9j

(xii) 52j

●? (Page 50)

Yes, for example = , although 2 ≠ 4 and 3 ≠ 6.

Activity 2.5 (Page 51)

= p + qj ⇒ (p + qj)(x + yj) = 1

⇒px + pyj + qxj + qyj2 = 1

⇒(px – qy) + (py + qx)j = 1

px – qy = 1 and py + qx = 0

Solving simultaneously gives p = , q = 

so = .

●? (Page 52)

= –j, = –1, = j

All numbers of the form are equal to 1.

All numbers of the form are equal to –j.

All numbers of the form are equal to –1.

All numbers of the form are equal to j.

Exercise 2B (Page 53)

1 (i) – j

(ii) + j

(iii) – + j

(iv) + j

(v) – j

(vi) 7 – 5j

(vii) –j

(viii) – j

(ix) + j

(x) –1 – j

2 (i) a = 5, b = 2

(ii) a = 3, b = –7

(iii) a = 2, b = –3

(iv) a = 4, b = 5

(v) a = , b = –

(vi) a = , b = 

3 a = 2, b = 2

4 (i) z = 2 – j 

(ii) z = 3 + j

(iii) z = 11 – 10j

(iv) z = 

5 0, 2, –1 ± 3j

6

8 (i) a3 – 3ab2 + (3a2b – b3)j

(iii) z = 1, – ± 3j

9 (i) (z – α)(z – β) = z2 – (α + β)z + αβ

(ii) (a) z2 – 14z + 65 = 0

(b) 9z2 + 25 = 0

(c) z2 + 4z + 12 = 0

(d) z2 – (5 + 3j)z + 4 + 7j = 0

10 No

11 (i) (a) 2j (b) –4 (c) (–4)k

(iv) 2(–4)k

12 w = 6 – 5j, z = 8 – 6j

13 a = –7, b = 11, other root is z = 5 – 2j

1–
2

1–
2

2x
––––––
x2 + y2

–35 + 149j
–––––––––

34

1––
2

1––
2

3–
4

5–
4

3–
2

32––
29

7––
29

27––
25

11––
25

1–
2

5–
2

11––
10

4–
5

3–
4

1–
4

1––
37

6––
37

1––
10

3––
10

1–––––
j4n + 3

1–––––
j4n + 2

1–––––
j4n + 1

1–––
j4n

1––
j3

1––
j2

1–
j

x – yj
––––––
x2 + y2

1–––––
x + yj

–y
––––––
x2 + y2

x––––––
x2 + y2

1–––––
x + yj

4–
6

2–
3

1–
2
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Activity 2.6 (Page 55)

(i) Rotation through 180° about the origin

(ii) Reflection in the real axis

●? (Page 55)

z and –z* (or –z and z*) are reflections of each other in

the imaginary axis.

Activity 2.7 (Page 57)

(i)

(ii)

Exercise 2C (Page 57)

1

(i) 13

(ii) 4

(iii) 26

(iv) 2

(v) 61

(vi) 5

2

3 Points:

(i) 10 + 5j

(ii) 1 + 2j

(iii) 11 + 7j

(iv) 9 + 3j

(v) –9 – 3j

4 (i) 5

(ii) 13

(iii) 65

(iv)

(v)

| zw | = | z || w |, | | = , | | = 

5 (i) z–1 = – j, | z–1 | =

z0 = 1, | z0 | = 1

z1 = 1 + j, | z1 | = 2

z2 = 2j, | z2 | = 2

z3 = –2 + 2j, | z3 | = 2 2

z4 = –4, | z4 | = 4

z5 = –4 – 4j, | z5 | = 4 2

(ii)

(iii) The half-squares formed are enlarged by 2

and rotated through each time.

6 Half a turn about O followed by reflection in the 

x axis is the same as reflection in the x axis followed

by half a turn about O.

●? (Page 58)

| z2 – z1 | is the distance between the points representing z1

and z2 in the Argand diagram.

π–
4

1––
2

1–
2

1–
2

| w |
–––| z |

w–
z

| z |
–––| w |

z–
w

13––
5

5––
13

Im

ReO

z1

z1 + (–z2)

–z2

z1
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●? (Page 59)

(i)

(ii)

(iii)

●? (Page 60)

(i)

(ii)

(iii)

Exercise 2D (Page 60)

1 (i)

(ii) Im

ReO 4

Im

ReO

2

3 + 4j

O

Im

Re

–1 + 2j

3 + 4j

O

Im

Re

–1 + 2j

3 + 4j

O

Im

Re

–1 + 2j

3 + 4j

O

Im

Re

3 + 4j

O

Im

Re

3 + 4j

O

Im

Re



(iii)

(iv)

(v)

(vi)

(vii)

(viii)

2

| z | is least at A and greatest at B.

3 7, 13

4 Not possible

5 (i)

(ii) Im

ReO

j

Im

ReO 2

Im

O ReA

B

12 – 5j

Im

Re–2 O

Im

ReO

1 – j

Im

ReO

–2 – 4j

Im

ReO

6 – j

Im

Re

O

–3 + 4j

Im

Re

O

5j
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(iii)

(iv)

●? (Page 62)

(i)

(ii) –

(iii) –

Activity 2.8 (Page 62)

(i) (a) 45°

(b) 63.4°

(c) 89.4°

(d) –63.4°

(e) –88.9°

(f) –89.7°

–90° � arctan x � 90°

(ii) – � arctan x �

Activity 2.9 (Page 63)

arg (1 + j) = , arg (1 – j) = – , arg (–1 + j) = , 

arg (–1 – j) = –

●? (Page 64)

(i) 2(cos (π – α) + j sin (π – α))

(ii) 2(cos (–α) + j sin (–α))

Activity 2.11 (Page 64)

Activity 2.12 (Page 65)

(i) (a) 1 + 3 + (1 – 3)j

(b) (1 – 3  + (1 + 3)j)

(ii) (a) | w | = 2, arg w =

(b) | z | = 2, arg z = –

(c) | wz | = 2 2, arg (wz) = arctan (–2 + 3) = –

(d) | | = , arg ( ) = arctan (–2 – 3) = 

(iii) | wz | = | w || z |, | | = 

arg (wz) = arg w + arg z, arg ( ) = arg w – arg z

(iv) (a) wz = r1r2 ((cos θ1 cos θ2 – sin θ1 sin θ2) +

j(sin θ1 cos θ2 + cos θ1 sin θ2))

= r1r2 (cos (θ1 + θ2) + j sin (θ1 + θ2))

= ((cos θ1 cos θ2 + sin θ1 sin θ2) + 

j(sin θ1 cos θ2 – cos θ1 sin θ2))

= (cos (θ1 – θ2) + j sin (θ1 – θ2))

(b) | wz | = r1r2, | | = , 

arg (wz) = θ1 + θ2, arg ( ) = θ1 – θ2

Exercise 2E (Page 66)

1 (i) r = 8, θ = 

(ii) r = , θ = 2.3

(iii) r = 4, θ = –

(iv) r = 3, θ = π – 3

2 (i) r = 1, θ = 0, z = 1(cos 0 + j sin 0)

(ii) r = 2, θ = π, z = 2(cos π + j sin π)

(iii) r = 3, θ = , z = 3(cos + j sin )π–
2

π–
2

π–
2

π–
3

1–
4

π–
5

w–
z

r1––r2

w–
z

r1––r2

r1––r2

w–
z

w–
z

| w |
–––| z |

w–
z

7π––
12

w–
z

2––
2

w–
z

π––
12

π–
3

π–
4

1–
4

3π––
4

3π––
4

π–
4

π–
4

π–
2

π–
2

π–
4

3π––
4

π–
2

Im

ReO

2 + 6j

–5 – 7j

Im

Rei – j

–i+j

O
tan 1 3

sin

cos 1–
2

3
––
2

1––
2

3
––
2

1–
2

1––
2

1––
3

π–
3

π–
6

π–
4–1 + j

1 – j



(iv) r = 4, θ = – , z = 4(cos (– ) + j sin (– ))
(v) r = 2, θ = , z = 2(cos + j sin )
(vi) r = 5 2, θ = – , z = 5 2(cos (– ) + jsin (– ))
(vii) r = 2, θ = – , z = 2(cos (– ) + j sin (– ))
(viii) r = 12, θ = , z = 12(cos + j sin )
(ix) r = 5, θ = –0.927, 

z = 5(cos (–0.927) + j sin (–0.927))

(x) r = 13, θ = 2.747, 

z = 13(cos 2.747 + j sin 2.747)

(xi) r = 65, θ = 1.052,

z = 65(cos 1.052 + j sin 1.052)

(xii) r = 12 013, θ = –2.128,

z = 12 013(cos (–2.128) + j sin (–2.128)

3 (i) z = 2j

(ii) z = + j

(iii) z = – + j

(iv) z = – j

(v) z = – – j

(vi) z = –2.497 – 5.456j

4 (i) α – π

(ii) –α

(iii) π – α

(iv) – α

(v) + α

●? (Page 66)

arg (z1 – z2) is the angle between the line joining z1 and z2

and a line parallel to the real axis.

Exercise 2F (Page 68)

1 (i)

(ii)

(iii)

(iv)

(v)

(vi)

2 ,

3 (i) , 2

(ii)

(iii) 12

4 (ii) k � | z + 2k | � 3k, – � arg(z + 2k) � π–
6

π–
6

Im

ReO

3

4

w

3

2
3

2

–

2π––
3

2π––
3

π–
3

π–
2

π–
2

5  3–––
2

5–
2

1––
2

1––
2

7–
2

7  3–––
2

3 3–––
2

3–
2

π–
6

π–
6

π–
6

π–
3

π–
3

π–
3

3π––
4

3π––
4

3π––
4

π–
4

π–
4

π–
4

π–
2

π–
2

π–
2
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Exercise 2G (Page 71)

1 2 – j, –3

2 z = 7, 4 ± 2j

3 p = 4, q = –10, other roots 1 + j, –6

4 z = 3 ± 2j, 2 ± j

5 z = ±3j, 4 ± 5

6 (i) w2 = –2j, w3 = –2 – 2j, w4 = –4

(ii) p = –4, q = 2

(iii) two of 1 – j, 1 + j, –1, –4

7 (i) α2 = –3 – 4j, α3 = 11 – 2j

(ii) –1 – 2j, –5

(iii) | –5 | = 5, arg (–5) = π

| –1 + 2j | = 5, arg (–1 + 2j) = 2.03

| –1 – 2j | = 5, arg (–1 – 2j) = –2.03

8 (i) β = –1 + 3j, γ = –1 – 3j

(ii) = – – j, = – + j

(iii) | α | = 4, arg α = π

| β | = 2, arg β = 

| γ | = 2, arg γ = –

(iv)

9 (i) α2 = –15 + 8j, α3 = –47 – 52j

(ii) k = 3

(iii) –7, 1 – 4j

arg (1 + 4j) = 1.326

arg (–7) = π

arg (1 – 4j) = –1.326

(iv) c = 5

10 (i) α2 = –8 – 6j, α3 = 26 – 18j

(ii) μ = 20

(iii) z = – , –1 ± 3j

| – | = , arg (– ) = π

| –1 + 3j | = 10, arg (–1 + 3j) = 1.893

| –1 – 3j | = 10, arg (–1 – 3j) = –1.893

11 (i) β = –2 + 2 3j, γ = –2 – 2 3j

(ii) | α | = 3, arg α = 0

| β | = 4, arg β = 

| γ | = 4, arg γ = –

| | = 1, arg ( ) = –

Im

Re

O

3

3

3

β

–2

2

–2

–1
–1

β

α

2π––
3

β
–γ

β
–γ

2π––
3

2π––
3

Im

ReO

3

–3

–1

–1 + 3j

–1 – 3j

2
3

–

2–
3

2–
3

2–
3

2–
3

Im

ReO

5

–5

–2–7

1 + 4j

1 – 4j

4

–4

1 3

Im

ReO

α

–4

1
α

1
β

β

2π––
3

2π––
3

3––
4

1–
4

1–γ
3––

4
1–
4

1–
β

Im

ReO

2

–2

–1–5

L –1 + 2j

–1 – 2j

5
2

–



Chapter 3

●? (Page 74)

The population of rabbits fluctuates but eventually

approaches a stable number.

●? (Page 75)

(i) The graph has two separate branches.

(ii) Curves

(iii) They can only draw a finite number of pixels.

●? (Page 77)

(i) x = –2

(ii) x = 1 and x = –2

(iii) x = 

●? (Page 77)

(– , 0), (0, – )

●? (Page 78)

x = 2

y → –∞ as x → 2 from the left.

y → ∞ as x → 2 from the right.

●? (Page 79)

(i) 0.0103

(ii) 0.001 003

(iii) 0.000 100 03

(iv) –0.0097

(v) –0.000 997

(vi) –0.000 099 97

As x → ∞, y → 0 from above.

As x → –∞, y → 0 from below.

●? (Page 79)

(i) (a) All are positive

(b) All are negative

(ii) (a) Positive

(b) Negative

●? (Page 80)

As x → –∞, y → 3 from below.

As x → ∞, y → 3 from above.

Activity 3.2 (Page 80)

●? (Page 82)

If the local maximum were higher than the local

minimum, it would be possible to draw horizontal lines

which cut the graph in more than two places.

●? (Page 84)

The information about the behaviour near the vertical

asymptotes was not needed. The sketch could be drawn

just from points where the graph crosses the axes, the

behaviour as x → ±∞, and the position of the vertical

asymptotes.

Exercise 3A (Page 86)

1 Step 1 (0, – )
Step 2 x = 3

Step 3 y → 0 from above as x → ∞

y → 0 from below as x → –∞

Step 4

2–
3

O

3

2

1
3

–

1
2

–

y

x

1–
2

1–
3

1–
2
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2 Step 1 (0, )
Step 2 x = 3

Step 3 y → 0 from above as x → ∞

y → 0 from above as x → –∞

Step 4

3 Step 1 (0, 1)

Step 2 none

Step 3 y → 0 from above as x → ∞

y → 0 from above as x → –∞

Step 4

4 Step 1 (0, 0)

Step 2 x = 2, x = –2

Step 3 y → 0 from above as x → ∞

y → 0 from below as x → –∞

Step 4

5 Step 1 (2, 0), (0, )
Step 2 x = –3

Step 3 y → –1 from above as x → ∞

y → –1 from below as x → –∞

Step 4

6 Step 1 (5, 0), (0, )
Step 2 x = –2, x = 3

Step 3 y → 0 from above as x → ∞

y → 0 from below as x → –∞

Step 4

7 Step 1 (3, 0), (0, )
Step 2 x = 2, x = 4

Step 3 y → 0 from below as x → ∞

y → 0 from above as x → –∞

Step 4

8 Step 1 (0, 0)

Step 2 none

Step 3 y → 0 from above as x → ∞

y → 0 from below as x → –∞

Step 4

3–
8

5–
6

O 2

2
3

–

y

x–3
–1

2–
3

2–
9
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9 Step 1 (3, 0), (0, – )
Step 2 x = 4

Step 3 y → 0 from above as x → ∞

y → 0 from below as x → –∞

Step 4

10 Step 1 ( , 0), (– , 0), (0, )
Step 2 x = –1, x = 4

Step 3 y → 10 from above as x → ∞

y → 10 from below as x → –∞

Step 4

11 Step 1 (3, 0) (repeated), (0, 9)

Step 2 none

Step 3 y → 1 from below as x → ∞

y → 1 from above as x → –∞

Step 4

12 Step 1 (6, 0), (0, )
Step 2 x = 4

Step 3 y → 1 from below as x → ∞

y → 1 from above as x → –∞

Step 4

13 (i)

(ii) k � –1 or k � 1

14 (i)

(ii) x = 1, minimum point = (1, )
(iii) (a) k � 0, k �

(b) k = 

(c) 0 � k �

15 (i)

(iii) 2

(iv) A turning point would mean that there would

be more than two values of x for a given y,

which, from part (iii), is impossible.

1–
4

1–
4

1–
4

1–
4

O 3–1

1
3

x

y

3–
2

3–
2

2–
5

3–
2

3––
16
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16 y = can be rearranged to form a linear

equation in x, so that there is one value of 

x for every given value of y.

17 (ii)

y = can be rearranged to form a

quadratic in x, so that for each value of y there

is at most two values of x, i.e. any horizontal

line crosses the graph at most twice.

If a � b � c, the graph is of the form shown

above. This graph crosses all possible

horizontal lines (except the x axis) exactly

twice. Any turning point would result in the

graph crossing some horizontal lines more

than twice.

(ii) If a = c and b � a there is a turning point to

the left of x = b.

18 (i) The graph is symmetrical about the y axis.

There are no vertical asymptotes. There is a

horizontal asymptote at y = 1.

(ii)

●? (Page 87)

For example: 2 � 3

1 � 5

Subtracting gives 1 � –2 which is not true.

Exercise 3B (Page 92)

1 (i)

(ii) –3 � x � 1, x �

2 (i)

(ii) x � –2, x � 1

3 (i)

(ii) –1 � x � 3

4 (i)

(ii) x < 0, x � 2

O 2 x

y = x2

y =

y

8
x

O–1 3 x

y = x2
y = 2x + 3

y

O

1

1–2

–2

y

x

7–
2

O

y

x–3 1 7
2

(x – b)
––––––––––
(x – a)(x – c)

ba c

x – 2––––
x + 3
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5 (i)

(ii) x � –1 or 0 � x � 1

6 (i) x � 1 or x � 3

(ii) x � –2 or 0 � x � 5

(iii) x � –1 or 2 � x � 5

(iv) –1 � x � or x � 2

(v) –2 � x � 0 or x � 4

(vi) x = 0 or 1 � x < 2

(vii) –5 � x � 2

(viii) x � –6 or –2 � x �

7 (i) –1 � x � 6

(ii) x � –1, 3 � x � 6

8 (i) � x �

(ii) –3 � x �

●? (Page 93)

0, 1 or 2

●? (Page 94)

At a turning point the graph touches the horizontal line,

resulting in a repeated root.

Exercise 3C (Page 95)

1 (i) (y – 1)x2 + x + 2 = 0

(ii) Maximum value of y = 

(iii) x = –4

(iv)

2 (ii)

3 (i) –1 � � 3

(ii)

Chapter 4

●? (Page 97)

x2(x – y), xy(x – y), y2(x – y)

x3 – y3 = x2(x – y) + xy(x – y) + y2(x – y) 

= (x – y)(x2 + xy + y2)

Yes

●? (Page 98)

Everything cancels and you end up with a statement such

as 0 = 0.

O x

y

–1

2

(–3, –1)

(1, 3)

6x + 6––––––
x2 + 3

O x

y

(–   , 1)1
2

9

(2, 11)

3

O x

y

–1

(–4,    )

2

9
8

1

9–
8

5–
3

5–
3

1–
2

2–
3

2–
5

O 1 x

y = x3

y =

y

1
x

–1
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Exercise 4A (Page 100)

1 (i) Not an identity; any value of x other than –1.

(ii) Identity; (x + 2)2 ≡ x2 + 4x + 4

(iii) Identity; (x + y)(x – y) ≡ x2 – y2

(iv) Identity; ≡ – 2 provided x ≠

(v) Not an identity; any value of x other that 0 or –3

(vi) Identity; x2 + 6x + 1 ≡ (x + 3)2 – 8

2 A = 2, B = –3

3 A = 2, B = –1, C = –6

4 P = 7, Q = –7, R = –5

5 L = 3, M = , N = –

6 A = 1, B = 2, C = 4, D = 7

7 A = , B = –

8 A = – , B = , C = 

Activity 4.2 (Page 100)

(i) x = 1 or 2, sum of roots = 3, product of roots = 2

(ii) x = –3 or 2, sum of roots = –1, product of roots = –6

(iii) x = 2 or 4, sum of roots = 6, product of roots = 8

(iv) x = 5 or –2, sum of roots = 3, product of roots = –10

(v) x = 1 or , sum of roots = , product of roots = 

(vi) x = 1 or , sum of roots = , product of roots = 

For the equation ax2 + bx + c = 0, 

the sum of the roots = – and the product of the roots =

●? (Page 101)

You get back to the original quadratic equation.

●? (Page 103)

To give equations with integer coefficients.

Activity 4.4 (Page 103)

2z2 + 3z + 5 = 0 has roots – ± j 31

z2 + 3z + 10 = 0 has roots – ± j 31

2z2 – z + 4 = 0 has roots ± j 31

Exercise 4B (Page 104)

1 (i) α + β = – , αβ = 3

(ii) α + β = , αβ = –

(iii) α + β = 0, αβ = 

(iv) α + β = – , αβ = 0

(v) α + β = –11, αβ = –4

(vi) α + β = – , αβ = –2

2 (i) z2 – 10z + 21 = 0

(ii) z2 – 3z – 4 = 0

(iii) 2z2 + 19z + 45 = 0

(iv) z2 – 5z = 0

(v) z2 – 6z + 9 = 0

(vi) z2 – 6z + 13 = 0

3 (i) 2z2 + 15z – 81 = 0

(ii) 2z2 – 5z – 9 = 0

(iii) 2z2 + 13z + 9 = 0

(iv) z2 – 7z – 12 = 0

4 (i) Roots are real, distinct and negative.

(ii) α = –β

(iii) One of the roots is zero.

(iv) The roots are of opposite signs.

6 (i) az2 + bkz + ck2 = 0

(ii) az2 + (b – 2ka)z + (k2a – kb + c) = 0

7 (i) α + β = 2, αβ = 3

(ii) + = = 

× = = 

(iii) 3z2 – 2z + 1 = 0

(iv) cz2 + bz + a = 0

8 (i) z2 – 68z + 4 = 0

(ii) z2 + 24z + 126 = 0

(iii) z2 – 16z – 8 = 0

(iv) z2 + 34z + 1 = 0

●? (Page 105)

az3 + bz2 + cz + d ≡ a(z – α)(z – β)(z – γ)

≡ a(z – α)(z2 – (β + γ)z + βγ)

≡ a(z3 – (β + γ)z2 + βγz – αz2 + α(β + γ)z – αβγ)

≡ a(z3 – (α + β + γ)z2 + (βγ + αβ + αγ)z – αβγ)

≡ az3 – a(α + β + γ)z2 + a(αβ + αγ + βγ))z – aαβγ

1
–
3

1 
––
αβ

1
–
β

1
–
α

2
–
3

α + β
––––

αβ
1
–
β

1
–
α

8–
3

24––
5

2–
7

1–
5

1–
5

7–
2

1–
4

1–
4

1–
2

3–
2

1–
4

3–
4

c––a
b––a

3–
2

5–
2

3–
2

1–
2

3–
2

1–
2

8–
5

3–
5

4–
5

1–
3

1–
3

4–
3

1–
3

1–
2

4x – 2–––––
1 – 2x
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●? (Page 107)

Product of roots = (2α + 1)(2β + 1)(2γ + 1)

= (2α + 1)(4βγ + 2(β + γ) + 1)

= 8αβγ + 4α(β + γ) + 2α + 4βγ + 2(β + γ) + 1

= 8αβγ + 4(αβ + βγ + γα) + 2(α + β + γ) + 1

Activity 4.5 (Page 108)

z = – ⇔ w = – = , since – = αβγ.

So w takes the values βγ, γα, αβ as z takes the values α, β, γ.

The equation simplifies to a2w3 – acw2 + bdw – d2 = 0.

Suppose that α (say) is 0. Then d = –αβγa = 0 and the

equation becomes

a2w3 – acw2 = 0

⇔ aw2(aw – c) = 0

⇔ w = 0 (twice) or 

= 0 (twice) or βγ, since = αβ + βγ + γα and α = 0

= αβ, βγ, γα with α = 0.

Activity 4.6 (Page 108)

(i) (α + β + γ)2 = α2 + β2 + γ2 + 2(αβ + βγ + γα)

(ii) (αβ + βγ + γα)2 = (αβ)2 + (βγ)2 + (γα)2 + 

2αβγ(α + β + γ)

(iii) αβγ( + + ) = αβ + βγ + γα

The proofs are by direct expansion and simplification.

Exercise 4C (Page 110)

1 (i) –

(ii) –

(iii) –

2 (i) z3 – 7z2 + 14z – 8 = 0

(ii) z3 – 3z2 – 4z + 12 = 0

(iii) 2z3 + 7z2 + 6z = 0

(iv) 2z3 – 13z2 + 28z – 20 = 0

(v) z3 – 19z – 30 = 0

(vi) z3 – 5z2 + 9z – 5 = 0

3 (i) z = 2, 5, 8

(ii) z = – , , 2

(iii) z = 2 – 2 3, 2, 2 + 2 3

(iv) z = , , 

4 Roots are , 2, 

k =

5 z = , , –

6 (i) w3 + 4w2 – 6w + 4 = 0

(ii) 2w3 – 14w2 + 27w – 8 = 0

(iii) 2w3 – 16w2 + 37w – 27 = 0

(iv) 2w3 + 24w2 + 45w + 37 = 0

7 α = –1, p = 7, q = 8 or α = p = q = 0

8 Roots are –p and ± –q

9 (i) p = –8(α + + β)
q = 8( + αβ + )
r = –4β

(iii) r = 9; x = 1, , –

r = –6; x = –2, – , 

10 z = , , –2

11 ac3 = b3d

z = , , 

12 (i) 5, –6, 4

(ii) 37

(iv) z3 + z2 + 37z – 4 = 0

13 (i) 0, –

k = –16(α + β + γ)

(ii) x = – , , 

k = –36

(iii) 27z3 – 81z2 + 90z – 20 = 0

●? (Page 111)

α + β + γ + δ = –

αβ + αγ + αδ + βγ + βδ + γδ = 

αβγ + βγδ + γδα + δαβ = –

αβγδ = 
e
–
a

d
–
a

c
–
a

b
–
a

3–
2

3–
2

3–
4

27––
16

9–
2

3–
2

1–
2

7–
3

3–
7

3–
2

1–
4

9–
4

1–
2

β 
––
2α

1
–
2

1
––
2α

3–
4

1–
2

1–
4

47––
2

5–
2

3–
2

5–
3

7–
6

2–
3

2–
3

2–
3

7–
2

1–
2

3–
2

1
–
γ

1
–
β

1
–
α

c–a

c–a

d–a
αβγ
–––z

d––az
d––aw



●? (Page 113)

α + β + γ + δ + ε = –

αβ + αγ + αδ + αε + βγ + βδ + βε + γδ + γε + δε = 

αβγ + αβδ + αβε + αγδ + αγε + αδε + βγδ + βγε + βδε + 

γδε = –

αβγδ + βγδε + γδεα + δεαβ + εαβγ = 

αβγδε = –

Exercise 4D (Page 113)

1 (i) –

(ii) 3

(iii)

(iv) 2

2 (i) z4 – 6z3 + 7z2 + 6z – 8 = 0

(ii) 4z4 + 20z3 + z2 – 60z = 0

(iii) 4z4 + 12z3 – 27z2 – 54z + 81 = 0

(iv) z4 – 5z2 + 10z – 6 = 0

3 (i) w4 + 4w3 – 6w2 – 4w + 48 = 0

(ii) 2w4 + 12w3 + 21w2 + 13w + 8 = 0

4 (i) w4 – 4w2 + 4 = 0

(ii) w = ± 2, α = β = 2 – 2, γ = δ = – 2 – 2

5 (i) α = – , β = 3

(ii) q = –16

(iii) 9y3 – 48y2 + 72y – 32 = 0

Chapter 5

●? (Page 115)

Although you can always work out your age if you know

your date of birth, most people know their age because

they add a year each birthday. If the old woman’s memory

is good enough, then she may well be correct, but you

cannot be sure.

Activity 5.1 (Page 115)

= 

+ = 

+ + = 

+ + + = 

The next two terms are and .

Activity 5.2 (Page 118)

(i) Assume true for n = k, so 2 + 4 + 6 + … + 2k = (k + )2

For n = k + 1, 

2 + 4 + 6 + … + 2k + 2(k + 1) = (k + )2
+ 2(k + 1)

= k2 + k + + 2k + 2

= k2 + 3k + 

= (k + )2

= (k + 1 + )2

The result is not true for k = 1 (L.H.S. = 2, R.H.S. = )
so it is not true for any positive integer n.

(ii) One possible example is 2 + 4 + 6 + … + 2n = 2n2.

Exercise 5B (Page 121)

4 (i) u2 = , u3 = , u4 = 

(ii) un = 

5 (i) u2 = 13, u3 = 35

9 (i) A2 = ( ), A3 = ( )

●? (Page 122)

For any arithmetic series, the sum of the terms 

Sn = n[2a + (n – 1)d]. 

This always approaches ∞ (or –∞ if d < 0) as n →∞,

unless a = d = 0, so an arithmetic series is never

convergent unless all the terms are zero.

For a geometric series, the sum of the terms Sn = .

If –1 � r � 1, then rn → 0 as n →∞, so the sum

converges to .
a–––––

1 – r

a(1 – rn)––––––––
1 – r

1–
2

–5   –12
3      7

–3  –8
2    5

1–
n

1–
4

1–
3

1–
2

9–
4

1–
2

3–
2

9–
4

1–
4

1–
2

1–
2

6–
7

5–
6

4–
5

1–––––
4 × 5

1–––––
3 × 4

1–––––
2 × 3

1–––––
1 × 2

3–
4

1–––––
3 × 4

1–––––
2 × 3

1–––––
1 × 2

2–
3

1–––––
2 × 3

1–––––
1 × 2

1–
2

1–––––
1 × 2

2–
3

2–
3

5–
2

3–
2

f
–
a

e
–
a

d
–
a

c
–
a

b
–
a
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●? (Page 124)

– + = 

= 

= 

●? (Page 124)

The sum converges because the numerator and the

denominator are of the same order.

As n → ∞, → = 

Exercise 5C (Page 124)

1 (ii) n2

2 (ii) n(n2 + 4n + 5)

3 (ii)

4 (ii)

5 (ii)

(iii) Yes, the sum converges to .

The numerator and the denominator are of

the same order.

6 (ii)

7 (ii)

(iii) Yes, the sum converges to .

As question 5.

8 (ii)

9 (ii)
n

∑
r=1

8r = 4n(n + 1)

10 (ii)
n

∑
r=1

(24r2 + 2) = 8n3 + 12n2 + 6n

11 (ii)
n

∑
r=1

(64r3 + 16r) = 16n4 + 32n3 + 24n2 + 8n

12 (i)
n

∑
r=1

r(r + 1) = n(n + 1)(n + 2)

(ii)
n

∑
r=1

r(r + 1)(r + 2) = n(n + 1)(n + 2)(n + 3)

(iii)
n

∑
r=1

r(r + 1)...(r + k) = n(n + 1)...(n + k + 1)

●? (Page 126)
n

∑
r=1

1 = 1 + 1 + 1 + ... + 1 (n times) = n

Exercise 5D (Page 127)

1 n2

2 n(n + 1)2

3 n(n + 1)(n + 2)(3n + 1)

4 n4

5 n(n + 1)(n + 2)

6 n(n + 1)(n + 2)(n + 3)

7 n(n + 1)(2n + 3)

8 (ii) 7

1–
2

1–
4

1–
3

1––
12

1–––––
k + 2

1–
4

1–
3

n(3n + 7)––––––––––––––
2(n + 1)(n + 2)

1–
4

n(n + 3)––––––––––––––
4(n + 1)(n + 2)

13–––
120

3–
4

n(3n + 5)––––––––––––––
4(n + 1)(n + 2)

n(n + 2)––––––––
(n + 1)2

20––
21

3–
2

3n2
––––
2n2

n(3n + 7)––––––––––––––
2(n + 1)(n + 2)

n(3n + 7)––––––––––––––
2(n + 1)(n + 2)

3n2 + 7n––––––––––––––
2(n + 1)(n + 2)

3(n + 1)(n + 2) – 4(n + 2) + 2(n + 1)––––––––––––––––––––––––––––––––––
2(n + 1)(n + 2)

1–––––
n + 2

2–––––
n + 1

3–
2



addition

in an Argand diagram  56

of complex numbers  49

of matrices  3

area scale factor  32

Argand diagram  55

sets of points in  58

Argand, Jean-Robert  55

argument  61

associative property  3, 18

asymptote  76

Brahmagupta  46

Cardan, Jerome  47

Cayley, Arthur  20

column vector  14

columns of a matrix  11

common difference  122

common ratio  122

commutative  3, 18

complex

conjugate  49

number  47

plane  55

complex numbers  47

addition  49

division  50

multiplication  49

subtraction  49

composition of transformations

23

conformable

for matrix addition  3

for matrix multiplication  18

conjecture  115

conjugate  49

roots  49, 69

convergent series  122

counting numbers  46

critical point  88

cubic equation  105

Descartes, René  47

determinant  29, 31

differences, method of  122

directed line segment  56

distributive property  19

division of complex numbers  50

elements of a matrix  2

equality

of complex numbers  50 

of matrices  3

equating real and imaginary

parts  50

equation

cubic  105

quadratic  100

quartic  111

quintic  113

Eudoxus  46

even function  84

fraction  46

function

even  84

odd  84

rational  76

Fundamental Theorem of

Algebra  69

Gauss, Carl Friedrich  47, 69

Girard, Albert  69

graph of a rational function  76

identity  97

identity matrix  19

Im  49

imaginary

axis  55

part  49

inconsistent equations  37

induction, proof by  116, 120

inductive  120

inequality  87

intercept  77

invariant
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point  41

inverse matrix  28

inverse of a matrix product  30

irrational number  46

j  48

Leibniz, Gottfried  47

limits of a sum  119

line of invariant points  42

linear transformation  8

mathematical induction  117

matrix  2
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elements of  2
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multiplication  14

multiplication by a number  3

non-singular  29
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zero  2
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method of differences  122

modulus–argument form  61, 62

modulus of a complex number  57

multiplication

of a matrix by a number  3

of complex numbers  49

of matrices  14

Newton, Isaac  47

non-singular matrix  29

number

complex  47

counting  46

irrational  46

negative  46

rational  46

real  47

odd function  84

order of a matrix  2

parameter  38

perpendicular bisector  60

polar form of complex numbers
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position vector  14

principal argument  61

proof by induction  116, 120

Pythagoras  46

quadratic equation  100

quadratic formula  48

quartic equation  111

quintic equation  113

radians    61

rational

function  76

number  46

Re    49

real

axis  55

number  47

number line  47

part  49

reflection matrix  27

roots

complex  48, 69

properties of  100

symmetric functions of  106

rotation matrix  11

sense  32

series 

arithmetic  122

convergent  122

geometric  122

sum of a  122

sets of points

in an Argand diagram  58

in modulus–argument form  64

shear  7

simultaneous equations  36

three simultaneous equations

39

singular matrix  29, 33

solving an inequality  87

square matrix  2

subtraction

in an Argand diagram  56

of complex numbers  49

of matrices  3

sum

by differences  122

of cubes  126

of finite series  122

of squares  126

telescoping  123

Sylvester, James Joseph  20

Tartaglia, Niccolò  47

telescoping sum  123

transformation matrix  8

columns of  11

transformations  6

composition of  23

in three dimensions  12

linear  8

transforming the plane  33

transitive inequality  87

turning points  81
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vector  56

position  14

Wessel, Caspar  55
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