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Preface

Realization of high performance arithmetic circuits targeted towards a specific
family of the high-end Field Programmable Gate Arrays (FPGAs) continue to
remain a challenging problem. Many fast arithmetic circuits proposed over the
decades may not be amenable to efficient realization on a selected FPGA archi-
tecture. Experience has shown that current CAD tools for FPGAs are often unable
to infer the native architectural components efficiently from the given input
Hardware Description Language (HDL) specification of the circuit, as they explore
only a small design space close to the input architectural description. The logic
synthesis techniques inherent to the CAD tools are also often unable to apply the
proper Boolean identities and perform appropriate algebraic factoring and
sub-expression sharing, especially when intermediate signals are tapped out or
registered. Primitive instantiation is an effective approach for optimization of
designs on the Xilinx FPGA platform, and is often simpler than rewriting the
Register Transfer Level (RTL) code to coax the logic synthesis tool to infer the
desired architectural components. In addition, the FPGA CAD tools often fail to
achieve an efficient placement of logic blocks on the FPGA fabric, resulting in
higher routing delays.

In this book, we describe the optimized implementations of several arithmetic
datapath, controlpath, and pseudorandom sequence generator circuits. We explore
regular, modular, cascadable, and bit-sliced architectures for these circuits, by
directly instantiating the target FPGA-specific primitives in the HDL specifications
of the circuits. We justify every proposed architecture with detailed mathematical
analyses. We improve performance by enforcing a constrained placement of the
circuit building blocks, by placing the logically related hardware primitives in
close proximity to one another, thereby minimizing the routing delay. This is
accomplished by supplying relevant placement constraints in the Xilinx proprietary
“User Constraints File” (.ucf) format to the FPGA CAD tool.

Taking advantage of the regularity of the architectures of the circuits proposed
by us, the HDL specifications of the circuits as well as the placement constraints
can be automatically generated. We have implemented a GUI-based CAD tool
named FlexiCore integrated with the Xilinx ISE (Integrated Software Environment)
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design environment for design automation of platform-specific high performance
arithmetic circuits from user-level specifications. This tool was used to implement
the proposed circuits, as well as hardware implementations of two integer arithmetic
algorithms (Greatest Common Divisor (GCD) using Binary GCD algorithm and
matrix multiplication using Distributed Arithmetic (DA)) where several of the
proposed circuits were used as building blocks. Implementation results demonstrate
higher performance and superior operand-width scalability at acceptable
power-delay product (PDP) for the proposed circuits, with respect to implemen-
tations derived through other existing approaches.

Kharagpur Ayan Palchaudhuri
Rajat Subhra Chakraborty
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Chapter 1
Introduction

Abstract This chapter presents a concise overview of FPGA-based architecture
design. Certain existing research work behind proposing new FPGA architectures
and CAD heuristics to overcome the design limitations have been discussed. It also
unfolds the limitations of the FPGA CAD tool that are currently popular for arith-
metic core generation. A methodology that uses the target FPGA specific primitive
instantiation-based approach and constrained placement exercise has been proposed
as a superior alternative in comparison to design implementations available in liter-
ature. The major contributions of this book have also been listed.

1.1 Background of FPGA-Based Design

Researchers over the years have proposed various Field Programmable Gate Array
(FPGA) architectures for high performance realization of digital circuits, particularly
those that have long cascading delay, e.g., ripple carry adder. In [19], an enhanced cas-
cade circuit with dedicated routing structures for fast propagation of signals between
cells was proposed to achieve a significant speedup. In [11], the authors had con-
sidered a folding method of logic functions and its adaptation to map to proposed
Look-Up Table (LUT) architectures, such that the memory requirement for real-
ization of the logic functions can be significantly reduced. It has also been studied
that reducing the number of stages of programmable routing (e.g., routing through
switchboxes) can significantly reduce the critical path [17]. This can be achieved
through use of LUTs which support maximum functionality and dedicated routing
along with other logic blocks. Experiments have confirmed that 6-input LUTs pro-
vide the right trade-off between critical path delay and design die size [3]. With
culmination of all such similar research paradigms, modern FPGAs have architec-
tural features amenable to the efficient implementation of combinational functions
of arbitrary complexity in the form of LUTs, along with fast special-purpose logic
and routing resources for propagating carry signals between adjacent logic blocks
in form of carry chain [9].

However, with a significant increase in circuit complexity for FPGA-based
designs, even the most sophisticated Computer Aided Design (CAD) tools often
result in circuit implementations with unsatisfactory performance and resource
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2 1 Introduction

requirements owing to their inability to optimally exploit the underlying FPGA
architecture and their dedicated routing fabric. Hence, implementations derived
through the standard automatic logic synthesis-based design flow starting with the
behavioral HardwareDescription Language (HDL) as themode of design entry of the
circuit, can be outperformed by more low-level “custom” design techniques. Exten-
sive experimentation with the Xilinx FPGACAD tool has shown that though the tool
is able to infer the desired hardware primitives for many combinational logic circuits,
it generally fails to do so when we synthesize sequential or pipelined architectures.
In addition, the current FPGA CAD tools often fail to place the technology mapped
sub-circuits at locations such that circuit delay is minimized. To overcome these lim-
itations, a designer needs to identify the basic building blocks of the required circuit,
and make an effort to optimally construct them from the hardware primitives avail-
able on the FPGA and ensure their proper placement. This book discusses several
FPGA-specific design techniques that need to be adopted for optimal realization of
high performance circuits and presents relevant case studies.

The rest of the chapter is organized as follows. In Sect. 1.2, we discuss the limita-
tions of FPGA CAD tools for realization of high performance circuits. In Sect. 1.3,
we describe the design philosophy that must be adopted to overcome the limitations
posed by current FPGA CAD tools. Section1.4 discusses two popular FPGA CAD
tools—the standard Xilinx Integrated Software Environment (ISE)-based Graphical
User Interface (GUI) for IP Core Generator andFloPoCo (in short for Floating–Point
Cores) where user inputs circuit specifications and the CAD tool generates the cor-
responding synthesizable HDL specification of the circuit. In Sect. 1.5, we mention
some of the recent works on architectural realization of arithmetic circuits on Xilinx
FPGAs. We state the major contributions of this book in Sect. 1.6. The organization
of the book is presented in Sect. 1.7.

1.2 Limitations of FPGA CAD Tools

Modern CAD tools for FPGA platform facilitate the automatic mapping of binary
addition logic to carry-chain structures to accelerate signal propagation, thereby
achieving a speedup in the critical paths. In addition, existence of carry-chain simpli-
fies routing by avoiding switch-boxes in the general routing fabric, and also increases
the functional capability of the FPGA logic slices. Such benefits have been experi-
mentally evaluated on the basis of combinationalMCNCbenchmarks in [15]. Though
synthesis tools for Xilinx Virtex architectures are able to map the binary addition
logic or a homogeneous wide AND and OR gates to carry chain fabric [16], or can
infer the wide function multiplexers native to an FPGA slice, it fails to do so as soon
as the final carry outputs of individual slices [14] or intermediate LUT outputs are
tapped out or registered to facilitate pipelining of the architecture. A possible rea-
son might be that Xilinx FPGA logic slices do not support dedicated hardware for
registering such signals, and the CAD tools fail to infer the desired implementation.
In such a scenario, the designer has to spell out special directives in the HDL of
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the design or associated “constraints files” to the FPGA CAD tool, so that in the
packing [1] or clustering step (as known in the FPGA CAD literature) of the FPGA
design flow, the technology mapped circuit is efficiently “packed” into the available
hardware resources.

1.3 Overview of Design Philosophy for FPGAs

Most current FPGA vendors allow direct instantiation of the available primitives in
the HDL code [21], and a “mixed” style of HDL coding, where high-level behavioral
code is intermingled with relatively “low-level” structural code. Placement steps
also need to be constrained and controlled, as the CAD placement tools, if allowed
to perform unconstrained placement and routing, often result in large routing delays.
This happens because the technology mapped logic elements get unevenly distrib-
uted across the FPGA fabric, resulting in greater routing and interconnect delays.
This contributes to a major portion of the circuit critical path delay. Although most
modern FPGA vendors provide special hardware IPs for common integer arithmetic
operationswhich can be directly instantiated in theHDL code,wewould demonstrate
that we can do better by adopting careful design techniques.

To follow themethodology promoted above, the designermust possess a thorough
understanding of the target FPGAarchitecture, the routing fabric, the available design
elements in the form of primitives and macros, and how to configure them to achieve
the required functionality. Also, the structure of the circuits must have sufficient
regularity to automate their design, and to allow efficient placement and routing.
Arithmetic circuits and Finite State Machines (FSMs) with regular structures (e.g.,
counters and shift registers) are thus the ideal candidates for this methodology.

1.3.1 Target FPGA-Specific Hardware Primitive Instantiation

With sufficient modularity in the circuit architecture, it becomes easy to automate
the generation of the HDL code, and associated constraint files which are themselves
very regular in their grammar. Target FPGA-specific primitive instantiation is an
effective approach for optimization of designs on the Xilinx FPGA platform [7],
and is often the only approach. The primitive instantiation-based methodology is
also simpler than rewriting the Register Transfer Level (RTL) code to coax the logic
synthesis tool to infer the desired architectural components. However, in general,
the entire circuit might not be amenable to the primitive instantiation-based design
approach. In such cases, this approach can be adopted to design only those parts of
the circuit that are amenable to such a methodology, and contribute significantly to
the critical path delay. The only disadvantage of using such a design methodology
is that the design becomes less portable, and becomes harder to maintain. In spite of
this, the methodology is very effective in practice, considering the facts that (a) often
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the target FPGA platform is known before the circuit is designed and that (b) FPGAs
from a related family from the same vendor are often backward compatible regarding
the design elements (primitives and macros) supported. For example, newer versions
of FPGAs of the “Virtex” family from Xilinx are expected to support primitives
supported in some older Virtex versions. Thus, the HDL code for instantiating prim-
itives targeting the older versions, and the constraints file to control the placement,
can be reused in the newer version after small tweaks, if necessary. Added with the
advantage of being able to automatically generate the circuit descriptions and the
constraints, this is an attractive methodology.

1.4 Existing FPGA CAD Tools

The most popular FPGA CAD tools for arithmetic core generation are the Xilinx IP
Core Generator and an open source tool called FloPoCo. We briefly describe their
main features and the relevant shortcomings.

1.4.1 Xilinx IP Core Generator

The Xilinx IP Core Generator is part of the standard Xilinx ISE distribution, It
includes a GUI-based utility, through which synthesizable HDL code (for common
integer arithmetic circuits such as adders, multipliers, accumulators, counters, etc.)
can be automatically generated. Designers can generate both combinational and
pipelined versions of the arithmetic circuits, where the user enters the parameter
latency as input for pipelined architecture realizations. Although such HDL auto-
matically generated by the Xilinx software is functionally correct, it fails to give
high performance when implemented, because the synthesis tool performs an ineffi-
cient technology mapping of the circuit, and the inferred logic elements are usually
scattered in an apparently random fashion across the FPGA fabric, thereby causing
large routing delays and affecting critical paths. Xilinx also allows the direct instan-
tiation of “Digital Signal Processing” (DSP) hardware macros in the HDL targeted
for FPGAs, which are highly customized dedicated arithmetic circuits. Individual
Virtex-5 DSP slices can operate at a maximum frequency of 550MHz [20], Virtex-6
DSP slices can operate at a maximum frequency of 600MHz [22]; such operating
frequencies are attainable at very low latency and are also suitable for low power
applications. However, as we would demonstrate, they have performance limitations
for large operand widths, and can be outperformed by the proposed circuits with
aggressive pipelining, coupled with compact and constrained placement of logic
primitives.
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1.4.2 FloPoCo (Floating-Point Cores)

FloPoCo is an open-source C++ framework for generating arithmetic cores for
FPGAs [8]. FloPoCo provides a command-line interface through which the user can
input operator specifications, and the program generates the corresponding synthe-
sizableVHDL (VeryHighSpeed IntegratedCircuitHardwareDescriptionLanguage)
code. The main features of FloPoCo as listed in [6] are as follows:

• Supports integer, fixed point, floating point, and Logarithmic Number System
(LNS) arithmetic.

• Supports pipelining by allowing the user to specify the desired operating frequency.
• Allows the user to specify the target FPGA implementation platform, and generates
synthesizable VHDL code optimized for that target platform. In addition,FloPoCo
performs target platform-specific pipelining, as its frequency-directed pipelining
takes into consideration the timing information about the target FPGAplatform [6].
FloPoCo comes with such models for the main FPGA families from both Xilinx
and Altera.

However, detailed experimentation with the latest released version of FloPoCo
(v 2.5.0) [8], and implementation and characterization of the integer arithmetic circuit
descriptions generated by it indicate the following drawbacks:

• FloPoCo only generates pure behavioral VHDL code which cannot correctly infer
the desired hardware primitives of the target FPGA platform. Consequently, it has
no control over the inference and placement of logic blocks on the FPGA fabric.
This makes the performance of the circuit post-synthesis worse than the target
frequency specified by the user. Thus, FloPoCo provides no guarantee that the
target frequency specified would be met in the final implementation.

• FloPoCo at times create very deep pipelines, apparently to meet input frequency
constraints, but post place-and-route implementations do not guarantee that the
delay constraints are met.

• Pipelining behavior of FloPoCo is very inconsistent. It was observed that for adder
circuit implementations, FloPoCo creates very deep pipelines, whereas it cre-
ates fairly unbalanced and irregular pipelines for dual subtractor implementations,
where each of the pipeline stages have different complexities. On the contrary, it
completely avoids pipelining the integer multipliers, but, however, generates an
erroneous comment in the VHDL code that it has achieved single stage pipelining.
Similar observations have been made for the squarer circuits where FloPoCo is
unable to pipeline squarer circuits whose input operand bit-widths are lower than
14, but create highly inefficient pipelines for squarer circuits of higher bit-widths.
Our observations about these inconsistencies in the pipelining behavior of the cur-
rent version of FloPoCo have been concurred with by the creators of FloPoCo
through personal correspondence. They have acknowledged that a bug exists in
their program, which they have filed and would probably be taken care of in future
releases.
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Irrespective of the behavior of existing options for automatic generation of arith-
metic circuit cores targeting FPGAs, the important approach to note is that most or all
of them are agnostic of the “low–level” architecture of the target FPGA platform, and
its routing issues. Consequently, they can be predicted to be unable to take advantage
of the hardware primitives, and to generate the most optimal circuit descriptions for
the target FPGA.

1.5 Recent Works on High Performance Circuit Realization
on Xilinx FPGAs

In the recent literature, design of fast adders [18, 24] and absolute difference cir-
cuits [13] on the Xilinx Virtex-5 family of FPGAs have been reported. These works
discuss the design of fast and efficient architectures by exploiting the carry chain and
6-input LUTs of the Virtex-5 family. In [2, 5], the authors have proposed methods
to integrate DSP blocks along with fabric logic for realization of multiplier circuits.
Similar approaches have been reported in [23] for realization of large integer squarers
on FPGA. Researchers have also been proposing heuristics for efficient synthesis of
FPGA-based circuits, notably on the class of circuits called “compressor trees” that
generalizes multioperand addition, and the partial product reduction trees of parallel
multipliers using carry-save arithmetic [12].

1.6 Major Contributions of the Book

In this book, we explore the architecture of several high performance integer arith-
metic circuits, built using primitive instantiation and constrained placement of target-
specific primitives on the Xilinx Virtex-5 and Virtex-6 FPGA fabric, and a CAD tool
to automate their design. The architectures are essentially “bit-sliced”, and conceived
in a way such that the bit-slices can be directly mapped to hardware primitives avail-
able on the FPGA. In addition, the placement of the primitives is carefully constrained
to improve the critical path delay, and throughput is increased further by appropriate
pipelining [10]. We call the CAD tool FlexiCore, in short for “Flexible Arithmetic
Soft Core Generator.” It is flexible in a sense that the operand widths for the mapped
circuits can be varied, and the CAD tool allows partial control to the user over the
placement of the circuits on the FPGA fabric. The CAD tool is integrated into the
standard Xilinx ISE design environment, thus making it extremely convenient to a
large user community, although nothing prevents our CAD tool (with minor modifi-
cations) to be part of other FPGACAD frameworks. The circuits currently supported
by the CAD tool are the ones most widely used in the domains of integer arithmetic
algorithms, digital signal processing, and digital image processing. The use of the
tool can also be easily extended for Xilinx FPGA platforms other than Virtex-5, after
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taking care of small modifications (e.g., changes in the “library primitive” names
supported by Xilinx).

To summarize, the following are the main contributions of our work:

• We develop a methodology to design high performance widely used integer arith-
metic circuits and pseudorandom binary sequence generators for Xilinx Virtex-5
and Virtex-6 FPGAs, while utilizing optimum hardware resources and having
acceptable power-delay product (PDP) wherever possible. The main insight is to
make optimal use of certain hardware primitives of the target FPGA platform, and
constrained placement of the primitives, combined with pipelining (as required).

• We elaborate on certain useful observations which act as important guidelines
for compact and high-performance realization of circuits realized using fabric
logic on modern high-end FPGAs from Xilinx. These involve manipulation of the
Boolean logic equations a priori in the HDL circuit descriptions, to forms that can
be optimally mapped to the native target architecture by the CAD software.

• We adopt a bit-sliced design paradigm where an entire arithmetic circuit is built
using identical modules of smaller bit width. As the stages of the building blocks
are identical, it is easier to perform an optimal, fine-grained, and forward path
pipelining. For some (two) circuits, we optimize the performance of the imple-
mentations derived using previously proposed architectures, while for the other
circuits, we develop the architectures from first principles. In all cases, we provide
in detail the Boolean logic-based mathematical analyses and proofs of correctness
leading to the architectures, at times supplementing the analyses presented in the
original sources of the architectures.

• The designs generated by our CAD framework show better operand-width scal-
ability in comparison to previously proposed designs [24], i.e., lesser decrease
of performance with the increase in operand width. However, any performance
(speed) deterioration observed with increase in operand width is mainly attributed
to the geometry of the FPGA devices and certain complex routing issues (either
due to the fabric architecture or due to the complex digital logic circuitry), both
of which are practically unavoidable by the user.

• Our designs outperform the circuits built using the GUI-based circuit generator
utility in-built inXilinx ISE, or by using theDSP slice hardmacros, or the arithmetic
cores generated by FloPoCo.

• Our CAD tool is integrated in the Xilinx ISE design environment to automate the
design of the circuits, including automatic generation of the necessary placement
constraint files.

• Wedemonstrate the effectiveness of the proposed designmethodology by the com-
plete “bottom-up” design of a 32-bit Greatest CommonDivisor (GCD) calculation
circuit, and a Distributed Arithmetic (DA)-basedMatrixMultiplication circuit that
utilizes several circuit building blocks generated by our CAD utility.

To the best of our knowledge, custom level implementation of logic elements on
FPGA fabric for obtaining superior speed performances has not been extensively
studied or reported in research articles. The previous literature reports high level
HDL modeling for FPGA-based arithmetic circuit design [4], however, our design
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philosophy for FPGAs is slightly different in nature, as would be revealed in more
detail in the upcoming chapters. This book aims to address this design philosophy
and validate the entire exercise by presenting suitable examples and case studies.

1.7 Organization of the Book

• Chapter1 is the introductory chapter which discusses some of the existing work
behind proposing new FPGA architectures, mapping of logic functions into pro-
posed LUT architectures, along with limitations of the CAD algorithms for opti-
mized mapping of logic into the FPGA fabric. It also presents the modern-day
FPGA architectural components available in the high-end FPGA families coming
fromXilinx. The existing Xilinx FPGACAD tools available to designers and their
limitations have been mentioned. A methodology to overcome these limitations
using the art of primitive instantiation and constrained placement exercise has been
proposed.

• Chapter2 provides architectural details for the Virtex-5 and Virtex-6 FPGA plat-
forms. It also discusses the different modes of implementations that Xilinx ISE
provides to generate arithmetic circuit descriptions.

• Chapter3 provides the fabric component-based approach for design of high perfor-
mance integer arithmetic circuits for FPGAs. The Boolean logic manipulation and
restructuring involved to map circuits optimally into the available FPGA hardware
primitives has been presented.

• Chapter4 presents the pipelined implementations of common arithmetic data-
path circuits such as integer adder, absolute difference circuit, combined unsigned
and two’s complement integer multiplier and squarer, and universal shift register.
We also present their Boolean logic-based mathematical analyses, proofs of cor-
rectness, and the post place-and-route implementation results clearly reveal the
superiority and advantages of our proposed design philosophy.

• Chapter5 presents the pipelined implementations of arithmetic controlpath cir-
cuits such as integer comparator and loadable bidirectional counter along with
their Boolean logic-based mathematical analyses, and the post place-and-route
implementation results. Once again, the results clearly reveal the superiority and
advantages of our proposed design philosophy.

• Chapter6 discusses the FPGA-based implementation of cellular automata (CA)-
based pseudorandom binary sequence generator.

• Chapter7 introduces the CAD tool for design automation, FlexiCore, for automat-
ing the HDL of arithmetic circuits along with the placement constraint related files
developed by us. The CAD tool can support the generation of multiple module-
based designs which has been put to use for the design of a Greatest Common
Divisor (GCD) circuit and a Distributed Arithmetic (DA)-based matrix multipli-
cation circuit. The superior performance of the designs whose descriptions have
been generated by FlexiCore have been tabulated.

• Chapter8 summarizes the contributions and draws the future research directions.

http://dx.doi.org/10.1007/978-81-322-2520-1_1
http://dx.doi.org/10.1007/978-81-322-2520-1_2
http://dx.doi.org/10.1007/978-81-322-2520-1_3
http://dx.doi.org/10.1007/978-81-322-2520-1_4
http://dx.doi.org/10.1007/978-81-322-2520-1_5
http://dx.doi.org/10.1007/978-81-322-2520-1_6
http://dx.doi.org/10.1007/978-81-322-2520-1_7
http://dx.doi.org/10.1007/978-81-322-2520-1_8
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1.8 Summary

In this chapter, we have presented a concise overview of the limitations of the existing
CAD tools for FPGA realization regarding optimal synthesis, technology mapping,
and placement for realization of high performance arithmetic pipelined blocks. The
overview of the design philosophy adopted by us for FPGA realization of arithmetic
circuits has been providedwith some recent works on high performance FPGA-based
arithmetic circuit design. We have also spelt out the major contributions of the book.
In the next chapter, we will discuss the architecture of the building blocks of our
target FPGA platform.
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Chapter 2
Architecture of Target FPGA Platform

Abstract This chapter provides an insight into the architecture of Configurable
Logic Blocks (CLBs), the basic building blocks of a FPGA, including details of
the Look-Up Tables, wide function multiplexers, carry chains, flip-flops, and DSP
slices. It also gives an overview of the different modes of implementation supported
by Xilinx ISE to realize arithmetic functions.

2.1 Introduction

Current FPGAs such as the advanced Virtex and Spartan families of Xilinx FPGAs
(e.g., Virtex-5, Virtex-6 and Spartan-6), promise immense hardware logic support,
at higher integration, lower power consumption, and maximum performance. Max-
imum system performance requires a balanced mix of performance-efficient FPGA
components: logic fabric (Look-UpTables (LUTs), special functions like carry chains
and dedicated multiplexers, flip-flops (FFs)), on-chip RAM, DSP blocks, and I/Os.
Virtex-5 FPGAs have been the first FPGA device fabricated at the 65nm CMOS
technology node. Switching from 90nm (for Virtex-4 FPGAs) to 65nm (for Virtex-5
FPGAs) [4] have promised the above-mentioned advantages. Spartan-6 FPGAs, on
the other hand, are built on a mature 45nm low-power copper process technology [3]
that delivers the optimal balance of cost, power and performance, whereas Virtex-6
FPGAs are built using a 40nm state-of-the-art copper process technology, and are
a programmable alternative to custom ASIC technology [9]. Xilinx 7 series FPGAs
leverage the unprecedented power, performance, and capacity enabled by TSMC’s
(Taiwan Semiconductor Manufacturing Company Limited) 28nm [2] high-k metal
gate (HKMG), high performance, low power (HPL) process technology, and the
unparalleled scalability afforded by the FPGA industry’s first scalable, optimized
architecture to provide a comprehensive platform base for next-generation systems.

The Configurable Logic Blocks (CLBs) of FPGAs are the main logic resources
for implementing sequential as well as combinatorial circuits. Each CLB element
is connected to a switch matrix for access to the general routing matrix as shown
in Fig. 2.1. Each CLB element for Virtex-5 and Virtex-6 series of FPGAs (that have
been our target platform for implementation) contain a pair of slices. These two slices
do not have direct connections to each other, and each slice is organized as a column.
© Springer India 2016
A. Palchaudhuri and R.S. Chakraborty, High Performance Integer Arithmetic
Circuit Design on FPGA, Springer Series in Advanced Microelectronics 51,
DOI 10.1007/978-81-322-2520-1_2
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Fig. 2.1 Arrangement of
slices within the CLB [5]

The Xilinx tools designate slices with the following definitions [5]. An “X” fol-
lowed by a number identifies the position of each slice in a pair as well as the column
position of the slice. A “Y” followed by a number identifies a row of slices. The
number remains the same within a CLB, but counts up in sequence from one CLB
row to the next CLB row.

The rest of the chapter is organized as follows. In Sect. 2.2, we present the slice
architecture for Xilinx Virtex-5 FPGAs. In Sect. 2.3, we present the additional and
modified features that Virtex-6 FPGAs offer in comparison to Virtex-5 FPGAs. A
brief overview of the DSP slice architecture has been presented in Sect. 2.4. The
different modes of implementation—fabric and DSP slice logic have been discussed
in Sect. 2.5. We conclude in Sect. 2.6.

2.2 Fabric Slice Architecture for Virtex-5 FPGAs

The CLBs of Xilinx FPGA are the main logic resources for implementing combina-
tional and sequential circuits. A typical CLB of Virtex-5 FPGA contains 2 “slices,”
with each slice (called a “SLICEL” or “SLICEM” in Xilinx terminology depending
on the nature of LUTs) comprising of four 6-input logic-function generators or LUTs,
four storage elements or FFs, three wide function multiplexers, and a length-4 carry
chain comprising of multiplexers and XOR gates [1, 5] as shown in Fig. 2.2. All
these elements are used by the slices for realization of arithmetic, logic, and memory
functions.
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Fig. 2.2 Xilinx Virtex-5 slice architecture [5]

The Xilinx Virtex-5 family has been the first FPGA platform to offer a true 6-input
LUT, with fully independent (not shared) inputs. This allows the implementation of
functions with higher operand width and reduces the number of logic levels between
registers. The 6-input LUT can also be configured as a 5 (or less) input, 2-output
logic function with shared inputs, thereby reducing the requirement in the number
of LUTs from two to one for certain logic expressions elaborated in Chap.3. The
LUTs present in SLICEL can implement any arbitrary combinational logic, whereas
the LUTs in SLICEM can be implemented as a synchronous RAM resource called
a distributed RAM element. The carry chain represents the fast carry propagation
logic and the LUTs in the slice can be optionally connected to the carry chain via
dedicated routes to implement complex logic functionality [7]. The storage elements
in a slice can be configured as either edge-triggered D-type FFs or level-sensitive
latches. Each FF can be controlled using the control signals set, reset, clock, and
clock enable signals.

http://dx.doi.org/10.1007/978-81-322-2520-1_3
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2.3 Fabric Slice Architecture for Virtex-6 FPGAs

Virtex-6 slice architecture is quite similar to Virtex-5 slice architecture, other than
the fact that it offers four additional storage elements in every slice in comparison to
Virtex-5 to facilitate more efficient pipelining and improved routing. However, every
storage element has one control signal less, i.e., it does not have independent set and
reset pins, as compared to Virtex-5 architecture. The slice architecture for Virtex-6
FPGAs is shown in Fig. 2.3. Other than that, it supports a higher bandwidth with

Fig. 2.3 Xilinx Virtex-6 slice architecture [8]
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greater number of serial transceivers that can deliver at a higher Gbps rate, along
with a faster global clocking with lower skew, improved jitter and faster clock trees
in comparison to Virtex-5 FPGA platforms.

2.4 DSP Slice Architecture for Virtex-5 and Virtex-6 FPGAs

DSP slices in FPGAs are typically designed for low power applications as it sig-
nificantly avoids fabric routing, but provides a reasonable speed of operation. The
Virtex-5 FPGA DSP48E slice, as shown in Fig. 2.4, supports several independent
arithmetic functionalities. Such functional units include a 25×18 two’s complement
multiplier, multiply accumulate (MACC) unit, multiply adder, three-input adder,
barrel shifter, wide-bus multiplexer, magnitude comparator, bitwise logic functions,
pattern detector, and wide counter. The slice has internal pipeline stages which must
be used for achieving maximum performance up to 550MHz.

For Virtex-6 FPGAs, the DSP slice available, DSP48E1, has all the features of a
Virtex-5 FPGADSP48E slice with certain additional features [10].When all pipeline
stages are used, Virtex-6 DSP slices can achieve a 600MHz speed of operation. It
supports an additional 25-bit pre-adder and register with another additional control
unit.

Fig. 2.4 Xilinx Virtex-5 DSP48E slice [6]
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2.5 Implementation Overview

Native platform-dependent primitives such as 6-input LUT and carry chain can be
directly instantiated in the HDL circuit description, and they appear unchanged in
the final implementation mapped on the FPGA. For efficient and high performance
design, the designer must ensure maximum utilization of the logic elements within
each slice, and place the logically related slices into adjacent locations.

Designs targeted toward Virtex-5 and Virtex-6 FPGAs can also exploit IP cores
available specifically for various arithmetic and logic functions. The Xilinx Logi-
CORE® hard IP provides two modes of implementation: Fabric and XtremeDSP®.
Fabric implementation involves utilization of LUTs, FFs, multiplexers and carry
chains, whereas XtremeDSP implementation involves utilization of the special DSP
slice which can also be instantiated as a primitive. DSP slice-based implementations
guarantee lower power consumption in comparison to fabric logic, but as we would
find, cannot alwaysmatch the performance achievable by circuits implemented using
constrained placement of Xilinx fabric logic.

Most of our performance results have been reported using the Virtex-5 FPGA as
the implementation platform.However, for certain circuits, like the cellular automata-
based pseudorandom binary sequence generator or the matrix multiplication circuit,
where it is necessary to register the dual outputs of the LUTs, Virtex-6 have been
chosen as the implementation platform to ensure a compact implementation and pack
more registers into a single slice, thereby freeing up resources that would otherwise
have spanned across multiple slices and depleted adjacent slices of their register
resources.

The circuits described in Chap.4–7 were implemented either on a Xilinx Virtex-5
FPGA, device family XC5VLX330T, package FF1738 and speed grade -2 or Xilinx
Virtex-6 FPGA, device family XC6VLX550T, package FF1760 and speed grade -2
using the Xilinx ISE 12.4 design environment. The speed of operation, resource
utilization, and power–delay product (PDP) of the architectures have been com-
pared with those reported in existing literature (if any) and with different modes of
implementation have been tabulated. The designs have been evaluated in terms of
speed, resource consumption in terms of FFs, LUTs, slices and DSP hard macros
(whenever applicable), and power–delay product (PDP). Power–delay product has
been calculated as the product of the power dissipation (sum of clock, logic, signal,
and DSP power dissipation), the (minimum) clock-period (toggle rate of 12.5%),
and the latency (in terms of the number of clock cycles required to complete the
computation).

Functions implemented using the DSP slices consume less power than those
implemented in general FPGA fabric [6], and this would be evident from the results.
However, it would also be evident that the proposed methodology based on fabric
logic, combined with careful and constrained placement can outperform the DSP
slice-based design with respect to speed. To achieve maximum performance using
the DSP slices, it is desirable to use all the pipeline stages within the DSP slice.

http://dx.doi.org/10.1007/978-81-322-2520-1_4
http://dx.doi.org/10.1007/978-81-322-2520-1_7
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2.6 Summary

In this chapter, we have introduced the modern and advanced families of Xilinx
FPGAs that provide immense logic integration facilities and architectural support for
high-performance implementations. The slice architectures for Virtex-5 and Virtex-6
FPGA families were described. An overview of the different modes of implementa-
tion were presented.

The next chapter will address a fabric component-based approach for realiza-
tion of arithmetic circuits on modern FPGA families, where certain guidelines for
manipulation and decomposition of Boolean logic level equations describing the
implemented circuits will be discussed so that they can be easily and efficiently
mapped to the physical fabric logic primitives of the target FPGA platform. Such an
approach also allows the designer to predict the overall hardware cost and ensure a
careful and compact placement of the logic architectures on the FPGA fabric. Certain
examples of useful and practical circuits have also been described to illustrate the
application of such guidelines for logic design.
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Chapter 3
A Fabric Component Based Design
Approach for High-Performance
Integer Arithmetic Circuits

Abstract This chapter elaborates on some useful guidelines that can be helpful for
compact and high-performance realization of circuits on modern high-end FPGAs
from Xilinx. It involves manipulation of the Boolean equations a priori in the HDL
circuit descriptions to forms that can be optimally mapped to the native target archi-
tecture by the CAD software. Although the guidelines are relatively simple, they are
extremely useful in the efficient realization of numerous arithmetic circuits which
can be constructed using the “bit-sliced” design paradigm.

3.1 Introduction

Implementation of highly optimized arithmetic circuits targeted toward a specific
family of high-end FPGAs continue to remain a challenging problem. This is because
the architecture of many fast arithmetic circuits that have been proposed over the
decades may not be amenable to a much optimized implementation for a selected
FPGA. Also, often the logic synthesis CAD software tools are unable to infer the
desired native building-block components from the given input HDL specification of
the circuit, as they explore only a small design space close to the input architectural
description [5]. In addition, the logic synthesis algorithms used internally by the
CAD tools are unable to apply the logic identities and perform appropriate algebraic
factoring and subexpression sharing in many cases, especially when intermediate
signals are tapped out [3] or registered to facilitate pipelining of the architecture.

It is in general a nontrivial computational problem to decompose the Boolean
equations describing the implemented circuit, to forms such that the resultant subex-
pressions can be mapped easily and efficiently to the physical primitives of the fabric
logic on the target FPGA. It helps if the designer manipulates the Boolean equations
a priori in the HDL circuit descriptions, to forms that can be optimally mapped to
the native target architecture by the CAD software.

The rest of the chapter is organized as follows. In Sect. 3.2, we discuss an existing
work that estimates the hardware cost to map a Boolean function of x variables using
k-input LUTs. We also discuss certain limitations behind the philosophy of making

© Springer India 2016
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such an estimate. In Sect. 3.3, we elaborate on certain important guidelines for high-
performance realization of circuits on modern high-end FPGAs from Xilinx. We
conclude in Sect. 3.4.

3.2 Existing Work

Apreviouswork [4] had reported area requirements (for LUT-based FPGAs) in terms
of the total number of k-input LUTs required to map a function of x variables, as

lut(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ≤ 1
1 if 1 < x ≤ k
� x−k

k−1 � + 2 if x > k and (k − 1) � | (x − k)
x−k
k−1 + 1 if x > k and (k − 1) | (x − k)

(3.1)

The above estimates of LUT requirements are based on the fact that LUTs are
perhaps the most important and viable option for implementing combinational logic
in FPGAs. Combinational logic blocks with higher number of inputs are expected to
be implemented by a cascade of LUTs, with permitted amount of parallel processing,
along the signal propagation path. However, for hardware-efficient implementations,
the designer must explore the additional logical capabilities that the LUTs of mod-
ern day FPGAs provide. In addition, there are other hardware primitives available
in the target FPGA platform to reduce the LUT requirement, such as the wide func-
tion multiplexers and the carry chains which must be considered for the purpose of
implementation. The above closed form expression in (3.1) for estimating hardware
resource requirements, therefore, has the following limitations:

• It assumes that all LUTs provide single outputs, whereas modern FPGAs from
Xilinx provides dual-output LUTs that can significantly reduce hardware cost,
provided the logic functions to be mapped satisfy certain criteria.

• It must be remembered that certain logic expressions can be factored appropriately
to form subexpressions that can be realized using a combination of hardware
primitives such as LUTs, wide function multiplexers and carry chains, thereby
providing multiple outputs out of a single slice. The closed form expressions in
(3.1) possibly hint at an approximate upper bound on the number of LUTs required.

• The number of LUTs occupied is not an accurate estimate of the area requirements,
it is the number of slices spanned by the logic elements which give an accurate
estimate of the total area required for logic realization.

The philosophy behind estimating the hardware resource requirement in terms of
the number of LUTs used [4] may not reflect its actual implementation on hardware.
For example, let us consider the Boolean logic functionality of an 8 : 1 multiplexer,
which is essentially an 11-input 1-output combinational logic function.
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f (s2, s1, s0, a, b, c, d, e, f, g, h) = s′
2s′

1s′
0a + s′

2s′
1s0b + s′

2s1s′
0c + s′

2s1s0d + s2s′
1s′

0e+
s2s′

1s0 f + s2s1s′
0g + s2s1s0h (3.2)

Going by (3.1), lut(x) = 2 for k = 6. This information indicates that the first six
variables go as input to the first LUT and the remaining five variables along with
the output of the first LUT go as input to the second LUT. However on examining
(3.2) closely, it can be observed that there is no possible way to decompose it to the
following form comprising of two functions f1 and f2 which could have actually
realized it using two LUTs:

f (s2, s1, s0, a, b, c, d, e, f, g, h) = f2 ( f1

implemented using 1 LUT
︷ ︸︸ ︷
(x1, x2, x3, x4, x5, x6), x7, x8, x9, x10, x11)

︸ ︷︷ ︸
implemented using 1 LUT

where xi can be any one of the variables of the function f .

3.3 Guidelines for High-Performance Realization

We list certain elementary but useful observations below, which should act as impor-
tant guidelines for compact and high-performance realization of circuits on modern
high-end FPGAs from Xilinx. These particular forms of the Boolean functions were
chosen because they are relevant in the optimal realization of several arithmetic func-
tions of interest on the Virtex-5 and Virtex-6 platform, as demonstrated later in this
work.

1. A six-input LUT can implement any arbitrary combinational logic function f ,
having a maximum of six inputs and a single output.

y = f (x1, . . . , xn) where 2 ≤ n ≤ 6 (3.3)

2. A six-input LUT can implement any arbitrary five (or less)-input two-output
function where each of the single-output functions may or may not have shared
inputs. For example, consider two functions g and h, where

g = f (x1, . . . , xn) with X = {x1, . . . , xn}, (3.4)

h = f (y1, . . . , ym) with Y = {y1, . . . , ym} (3.5)

Here, the sets X and Y are called the support [2] of the functions g and h. For
packing g and h into a single LUT, any one of the conditions must be satisfied:

• 4 ≤ |X | + |Y | ≤ 5; if X ∩ Y = ∅ (i.e., g and h are orthogonal)
• 2 ≤ |X | + |Y | ≤ 10; if X ∩ Y �= ∅
where |X | and |Y | are the cardinality of the sets X and Y .
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Fig. 3.1 Architecture
mapping for Boolean logic
that can be decomposed with
respect to a single variable

3. Let f be a Boolean function of n variables (8 ≤ n ≤ 13) which can be represented
in the following form (see Fig. 3.1):

f (i1, i2, . . . , in) = x ′
1 fx ′

1
+ x1 fx1 (3.6)

• Here, fx1 and fx ′
1
are each six (or less)-input combinational functions that can

be individually realized using one LUT each.
• The wide function multiplexer present in the same slice as that of the LUTs
computes the final expression, as shown in Fig. 3.1.

• Equation (3.1) however evaluates to lut(x) = 3, where x = xmax = 13 (6× 2
(two six-input LUTs) + 1 (select line)) and k = 6.

• If there exist p functions of the form as in f , the design requires 	p/2
 slices,
and 2p LUTs.

• An 8 : 1 multiplexer can be realized using this logic where the 6-input LUTs
of Fig. 3.1 are configured as 4 : 1 multiplexers each (sharing the same select
lines), and the wide function multiplexer selecting one of the LUT outputs.

4. Let f be a function of n variables (17 ≤ n ≤ 26) such that we can apply recursive
decomposition twice on it as shown below:

f (i1, i2, . . . , in) = x ′
1 fx ′

1
+ x1 fx1

= x ′
1(x ′

2 fx ′
1x ′

2
+ x2 fx ′

1x2) + x1(x ′
3 fx1x ′

3
+ x3 fx1x3)

= x ′
1x ′

2 fx ′
1x ′

2
+ x ′

1x2 fx ′
1x2 + x1x ′

3 fx1x ′
3
+ x1x3 fx1x3 (3.7)

• Here, fx ′
1x ′

2
, fx ′

1x2 , fx1x ′
3
and fx1x3 are each 6 (or less)-input combinational

functions that can individually be realized using one LUT each.
• Three wide function multiplexers present in the same slice as that of the LUTs
computes the final expression as shown in Fig. 3.2.
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Fig. 3.2 Architecture mapping for Boolean logic that can be decomposed with respect to two
variables

• Equation (3.1) however evaluates to lut(x) = 6, where x = xmax = 27 (6× 4
(four six-input LUTs) + 3 (select lines)) and k = 6.

• If there exists p functions of the form as in f , the design requires p slices and
4p LUTs.

• A 16 : 1 multiplexer can thus be mapped in a single slice using four LUTs,
and three wide function multiplexers.

5. Consider any expression R of the following form:

R = a′b + a[X ] (3.8)

= a′b + a[c′d + c(Y )] (3.9)

= a′b + a[c′d + c(e′ f + e{Z})] (3.10)

= a′b + a[c′d + c(e′ f + e{g′h + gi})] (3.11)
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Fig. 3.3 Architecture mapping for Boolean logic that can exploit the carry chain

where X = c′d + cY , Y = e′ f + eZ and Z = g′h + gi . Here i is a single input
variable, and for every member of the pair (a, b), (c, d), (e, f ), and (g, h), there
can be either of the following possibilities:

a. Both the members of the pair can individually be a maximum five (or less)-
input function.

b. First member can be a six (or less)-input function and second member can be
a single variable function.

The above expression can be realized using four LUTs and a single carry chain,
thereby occupying only a single slice in a modern high-end Xilinx FPGA, as shown
in Fig. 3.3.

• The Boolean logic equation (3.11) essentially represents a cascade of 2:1 multi-
plexer functions.
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• Here, R can have a maximum of 29 (6 × 4 (four six-input LUTs) + 4 inputs v4:1
external to the logic slice + 1 external input to the bottom MUXCY of the carry
chain) input variables.

• If the Boolean logic function to be realized is of the form such that the variable i
in (3.11) can be substituted by another expression bearing a similar resemblance
to (3.11), and in such a way, if a total of n such substitutions can be carried out
only at the position of variable i , then the entire expression can be realized using
(n + 1) slices and a maximum of 4(n + 1) LUTs.

• From (3.1), we obtain lut(x) = 6, where x = 29 and k = 6 for which a minimum
FPGA area of two slices are required. However, with the help of carry chain fabric,
the entire architecture can be compacted within a single slice.

• A wide input AND and OR gate can be realized by the function R.
• Example of a wide (24-input) AND gate where the logic equation can be manip-
ulated to fit the form of (3.11) as shown below:

R = a1a2a3a4a5a6a7· · ·a18a19a20a21a22a23a24
= a19· · ·a24 · 0 + (a19· · ·a24)[a18a17· · ·a1a0]
= a19· · ·a24 · 0 + (a19· · ·a24)[a13· · ·a18.0 + (a13· · ·a18)[a12· · ·a0]]
= a19· · ·a24 · 0 + (a19· · ·a24)[a13· · ·a18 · 0 + (a13· · ·a18)

[a7· · ·a12 · 0 + (a7· · ·a12)[a1· · ·a6 · 0 + (a1· · ·a6) · 1)]]] (3.12)

Thus, going by Fig. 3.3, a = a19a20a21a22a23a24, c = a13a14a15a16a17a18, e =
a7a8a9a10a11a12 and g = a1a2a3a4a5a6, b = d = f = h = 0, and i = 1. Hence
each 6-input LUT realizes a 6-input AND gate and the outputs of the 6-input LUTs
are AND-ed using the carry chain.

• Example of awide (24-input)ORgatewhere the logic equation can bemanipulated
to fit the form of (3.11) as shown below:

R = a1 + a2 + a3 + a4 + · · · + a21 + a22 + a23 + a24
= (a19 + · · · + a24) · 1 + (a19 + · · · + a24)[a18 + · · · + a1]
= (a19 + · · · + a24) · 1 + (a19 + · · · + a24)[(a13 + · · · + a18) · 1

+ (a13 + · · · + a18)[a12 + · · · + a1]]
= (a19 + · · · + a24) · 1 + (a19 + · · · + a24)[(a13 + · · · + a18) · 1

+ (a13 + · · · + a18)[(a7 + · · · + a12).1 + (a7 + · · · + a12)

[(a1 + · · · + a6) · 1 + (a1 + · · · + a6) · 0)]]] (3.13)

Thus, going by Fig. 3.3, a = a19 + a20 + a21 + a22 + a23 + a24,
c = a13 + a14 + a15 + a16 + a17 + a18, e = a7 + a8 + a9 + a10 + a11 + a12
and g = a1 + a2 + a3 + a4 + a5 + a6, b = d = f = h = 1, and i = 0. Hence
each 6-input LUT realizes a 6-input NOR gate and the outputs of the 6-input LUTs
are fed to the carry chain and a wide input OR gate is realized by following the
absorption law a + ab = a + b.
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As illustrative examples of application of the preceding observations, we describe
certain practical circuits where a wide input AND and OR gate are necessary for
realization.

• Consider the design of a priority encoder which arbitrates among N units that are
all requesting access to a shared resource. Access is to be granted to a single unit
with highest priority where the least significant bit of the input corresponds to the
highest priority. The corresponding logic equations can be described as

Y1 = N1

Y2 = N2 · N1

Yi = Ni · Ni−1 · Ni−2 · · · · · N2 · N1
︸ ︷︷ ︸

wide input AND gate

• Architecture of an incrementer that adds 1 to an input word N can be described
by the following logical equations:

Y0 = N0

Y1 = N1 ⊕ N0

Yi = Ni ⊕ (Ni−1 · Ni−2 · · · · · N1 · N0)
︸ ︷︷ ︸

wide input AND gate

• Architecture of a decrementer that subtracts 1 from an input word N can be
described by the following logical equations:

Y0 = N0

Y1 = N1 � N0

Yi = Ni � (Ni−1 + Ni−2 + · · · + N1 + N0)
︸ ︷︷ ︸

wide input OR gate

• K = A + B Comparator [1]
To design a circuit to detect A + B = K , the usual approach is to design an adder
that adds inputs A and B, and feed the sum and input K to an equality comparator.
However to significantly reduce hardware and computational overhead, a method-
ology was proposed in [1]. The key observation is the fact that if A and B are
known, the carry into each bit to make K = A + B can be determined. Thus, it
is sufficient to check adjacent pairs of bits to verify that the carry-out produced
by the previous bit and the carry-in required by the current bit are both same. The
truth Table3.1 shows the required and generated carries.
The required carry-in cri−1 for bit i and the generated carry-out cpi−1 for bit i −1
are obtained as follows:
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Table 3.1 Required and
generated carries [6]

Ai Bi Ki cri−1
(required)

cpi
(produced)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 1

0 1 1 0 0

1 0 0 1 1

1 0 1 0 0

1 1 0 0 1

1 1 1 1 1

cri−1 = Ai ⊕ Bi ⊕ Ki (3.14)

cpi−1 = (Ai−1 ⊕ Bi−1)Ki−1 + Ai−1 · Bi−1 (3.15)

Equality check for the i-th bit position is performed using a single LUT as it can
be computed using six distinct variables-Ai , Bi , Ki , Ai−1, Bi−1 and Ki−1.

E Qi = cri−1 � cpi−1 (3.16)

Final equality check is done using carry chain where all the outputs corresponding
to equality checks at every bit position are AND-ed together.

E Q = E Q j · E Q j−1 · · · · · E Qi · · · · · E Q1 · E Q0
︸ ︷︷ ︸

wide input AND gate

(3.17)

• Additionally, we can obtain the following outputs from the XOR gates of the carry
chain: L = a ⊕ X , M = c ⊕ Y , N = e ⊕ Z and O = g ⊕ i .

– The XOR gates of the carry chain can compute the sum bits of an adder.
– Propagate function pi is computed using LUT; pi = ai ⊕ bi .
– i-th sum bit is computed by XORCY gate of carry chain; si = pi ⊕ ci .
– Carry-out bit of each stage is computed using MUXCY of carry chain; ci+1 =

pi ai + pi ci .
– An n-bit adder can be realized using 	n/4
 slices and a maximum of n LUTs.

Additionally, LUTs of SLICEM can also be configured as shift registers. Each
SLICEM LUT can be configured as a variable 1 to 32 clock cycle shift register [7]
whose length can be fixed, static, or dynamically adjusted by controlling A[4 : 0]
as shown in Fig. 3.4. The LUT can be described as a 32 : 1 multiplexer with the
five inputs serving as binary select lines, and the values programmed into the LUT
serving as the data being selected. Such LUTs can be cascaded with FFs and other
LUTs of SLICEM to realize greater shift lengths. Presence of these special LUTs
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Fig. 3.4 Configuration of an LUT (of SLICEM) as a shift register

reduces FPGA resource utilization compared to implementations using FFs only.
Since each SLICEM in a Virtex-5 FPGA contains four LUTs and four FFs, a 1 to
132 clock cycle shift register can be realized in a single slice; and a 1 to 136 clock
cycle register can be realized in a single slice for Virtex-6 FPGAs as it contains four
additional FFs. For realization of an n-clock cycle shift register, we require 	n/132

slices, with a maximum of 4	n/132
 LUTs, and 4	n/132
 FFs for Virtex-5 FPGA
platform, and 	n/136
 slices, with a maximum of 4	n/136
 LUTs and 8	n/136

FFs for Virtex-6 FPGA platform. Shift registers are implemented typically for Linear
Feedback Shift Register (LFSR) circuits.

3.4 Summary

All the above-mentioned guidelines are critical for consideration of efficientmapping
of Boolean logic equations on target FPGA fabric. Such guidelines have manifold
applications in realization of numerous arithmetic circuits which can be constructed
using bit-sliced design paradigm. In the next few chapters, we will show such arith-
metic datapath and controlpath circuits where wewill be frequently referring to these
guidelines to explain the architectures. We will discuss the pipelined implementa-
tions of adders, fast carry lookahead logic for adder circuits, absolute difference cir-
cuits, multipliers, squarers, universal shift comparators, counters and pseudorandom
sequence generators, and validate our design philosophy by tabulating the superior
performance improvements that has been achieved in comparison to implementations
carried out using other design philosophies. The next chapter discusses pipelined
implementations of arithmetic datapath circuits.
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Chapter 4
Architecture of Datapath Circuits

Abstract This chapter discusses some common arithmetic datapath circuits
which can significantly contribute to the critical path delay, either due to their
long, cascading path delay, or undesirable inference of logic elements and their irreg-
ular placement on the Xilinx fabric logic. We present pipelined implementations of
arithmetic datapath circuits, whichwhen combinedwith their constrained and careful
placement on the fabric logic, significantly improve their performance. Simultane-
ously, we present the associated mathematical analyses and proofs of correctness for
the proposed architecture.

4.1 Introduction

We now describe the architectures of the arithmetic datapath circuits supported by
theFlexiCoreCAD tool. Currently, the CAD tool supports the following datapath cir-
cuits: Integer Adder/Subtractor, Integer Absolute Difference Circuit,Combined
Two’s Complement and Unsigned Integer Multiplier,Combined Two’s Comple-
ment and Unsigned Integer Squarer, and Universal Shift Register. Among these
circuits, the Xilinx Virtex-5-based optimized architectures for the adder and absolute
difference circuits have been proposed previously [16, 24]—we have improved the
performance by pipelining at appropriate locations and using constrained placement.
The architecture of the remaining circuits as well as the Boolean algebraic justifi-
cations and formal proofs to justify all the architectures have been explained by us
in detail. The design automation of all the circuits (including the ones previously
proposed) have been discussed and implemented by us.

The rest of the chapter is organized as follows. InSect. 4.2,wepresent the pipelined
implementation of integer adders. In Sect. 4.3, we present the pipelined implemen-
tation of absolute difference circuits. Section4.4 discusses the hybrid, carry-save,
pipelined implementation of combined unsigned and two’s complement integer mul-
tipliers. Section4.5 presents the implementation of squarers using similar design
philosophy proposed for multipliers. Universal Shift Register implementations have
been proposed in Sect. 4.6. We conclude in Sect. 4.7.
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4.2 Integer Adder/Subtractor Architecture

4.2.1 Hybrid Ripple Carry Adder (Hybrid RCA)

The basic building block for realization of a pipelined “hybrid ripple carry adder”
(Hybrid RCA), using the carry chain, LUTs, and FFs available in a Xilinx slice, has
been depicted in Fig. 4.1. The term “hybrid” signifies that pipelining has been done
after every 4-bit addition. The outputs of the “XORCY” gates generate the sum bits,
whereas the output of each MUXCY calculates the intermediate carries. Latches
can be inserted on the carry propagation path for pipelining the design. The LUTs
compute the propagate function pi = ai ⊕ bi . Let gi = ai bi be the corresponding
generate function. The i th sum bit is then calculated by XOR-ing the LUT and
MUXCY outputs as

si = pi ⊕ ci = ai ⊕ bi ⊕ ci (4.1)

Fig. 4.1 Basic building
bock for pipelined
implementation of hybrid
Ripple Carry Adder (RCA)
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where ci is the i th carry-in bit. The output of each MUXCY gate computes the i th
carry-out as:

coi = gi + pi ci = ai bi + (ai ⊕ bi )ci

= (ai bi + ai bi )ai + (ai ⊕ bi )ci = pi ai + pi ci (4.2)

If pipelined, this Hybrid RCA results in �n/4� − 1 pipeline stages.
Staging registers to align the inputs and outputs can be realized through instanti-

ation of the SRLC32E primitive, which is a 1-to-32 clock cycle shift register imple-
mented using a single SLICEMLUT [22]. Since the priority for our designs is speed,
we implement an n-bit delay by configuring the LUTs to function as an (n − 1)-bit
shift register. It also uses a FF available in the same slice of the LUT to realize the last
unit of delay, as depicted in Fig. 4.2, that simultaneously pipelines the architecture
without any overall increase in latency. Similar implementation of staging delays
by interchanging the SLICEM LUT and FF position (for maximum speed) is valid
for aligning the output bits. However, additional staging registers can be reduced
drastically for a system implementation by adjusting the structure that uses them,
and hence staging registers have been kept optional.

The extension of the functionality of the adder is relatively straightforward: the
adder can also be configured as a subtractor using a mode control input M , which

Fig. 4.2 Staging delay
implementation through shift
registers and FFs
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is set to 0 for addition and 1 for subtraction. The modified sum and carry output
equations become:

si = ai ⊕ (bi ⊕ M) ⊕ ci (4.3)

coi = ai (bi ⊕ M) + (ai ⊕ bi ⊕ M)ci (4.4)

The LUTs in Fig. 4.1 now compute the modified propagate function as pmi =
ai ⊕bi ⊕M . The carry-out to the next successive stage is determined by the following
(4.5) with the initial carry set to M :

coi = ai (bi ⊕ M) + (ai ⊕ bi ⊕ M)ci = pmi ai + pmi ci (4.5)

4.2.2 Xilinx DSP Slice-Based Adder

As mentioned previously, adders can also be realized using generic configurable
logic like embedded DSP48E slices. Each slice can accept operands of width 48
bits. To realize larger adders with higher operand width n(>48), we require �n/48�
DSP48E slices, and such designs can be pipelined by activating the pipeline registers
internal to the slices to provide full speed operation. Thus, in such cases, the Xilinx
Synthesis Tool (XST ) does not report the number of pipeline registers consumed
which are internal to the DSP slice. An n(>48)-bit pipelined DSP slice-based adder
requires �n/48� − 1 pipeline stages. In order to perform the addition operation, the
attributes “ALUMODE” and “OPMODE” have to be set to “0000” and “0001111”,
respectively [21], whereas for subtraction operation, the attributes “ALUMODE” and
“OPMODE” have to be set to “0011” and “0110011”, respectively [21]. ALUMODE
and OPMODE are special control signals of the DSP slice. ALUMODE controls the
selection of the logic function in the DSP48E slice, whereas, OPMODE controls the
inputs being fed to the logic units present inside the DSP slice. Figure4.3 illustrates
the DSP adder architecture.

Fig. 4.3 Xilinx DSP
slice-based adder [21]
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Fig. 4.4 Architecture for FloPoCo generated adder

4.2.3 FloPoCo-Based Adder

The behavior of FloPoCo, when asked to generate behavioral VHDL code for adders
targeted toward Virtex-5 platform implementation, and same frequency of operation
as obtained through our approach of constrained placement, is interesting. From
the generated VHDL code, it was observed that the circuit description generated is
pipelined, with each stage performing 2-bit addition, as shown in Fig. 4.4. This in
itself proves that the architecture cannot enjoy the benefit of utilizing a complete
length-4 carry chain natively available in the Virtex-5 family to realize the archi-
tecture. As expected, when the generated code from FloPoCo is synthesized using
Xilinx XST, the synthesis tool is unable to map each 2-bit adder to its fast carry chain
fabric, thereby resulting in a complete LUT-based implementation, and is usually
unable to satisfy the frequency constraints.

4.2.4 Fast Carry Adder Using Carry-Lookahead Mechanism

The novel adder proposed in [24] had been designed using carry-lookahead mecha-
nism by splitting an n-bit adder into two independent, identical portions L-RCA and
H-RCA, each of which calculates n/2 sum bits (assuming n to be even). The H-RCA
receives its carry input from a fast carry generator circuit. Both the L-RCA and
H-RCA are architecturally identical to the pipelined implementation of the Hybrid
RCA shown in Fig. 4.1. The architecture of the fast adder architecture proposed in
[24] for 64-bit operands is shown in Fig. 4.5. The reformulation of the carry chain
computation [12] has been addressed in the fast carry generator as follows:

Let Pi : j and Gi : j denote the group-propagated carry and the group-generated
carry functions, respectively, for a group of bit positions i, i − 1, . . . j (with i ≥ j).
Pi : j equals 1 when an incoming carry into the least significant position j , c j , is
allowed to propagate through all i − j + 1 bit positions. Gi : j equals 1 when a carry
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Fig. 4.5 Fast adder architecture proposed in [24]

is generated in at least one of the bit positions from j to i (both inclusive), and
propagates to bit position i + 1, i.e., the outgoing carry ci+1=1 [2].

Pi : j =
{

Pi , if i = j.

Pi Pi−1: j if i ≥ j.
(4.6)

Gi : j =
{

Gi , if i = j.

Gi + Pi Gi−1: j if i ≥ j.
(4.7)

where Pi = ai ⊕ bi and Gi = ai bi .
The recursive equaions (4.6)–(4.7) can be further generalized to

Pi : j = Pi :m Pm−1: j (4.8)

Gi : j = Gi :m + Pi :m Gm−1: j (4.9)

where i ≥ m ≥ j + 1.
For the mth bit position, i ≥ m ≥ j , we have

cm = Gm−1: j + Pm−1: j c j (4.10)
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Fig. 4.6 Architecture for
fast carry generator [24]

In the architecture depicted in Fig. 4.6, the logic functions Gi : j and Pi : j are cal-
culated using the 6-input LUTs where i = j + 1, and m = i + 1 = j + 2 and cm is
calculated using the carry chain. Thus,

Pi : j = Pi Pj = (ai ⊕ bi )(a j ⊕ b j ) (4.11)

Gi : j = Gi + Pi Gi−1: j = ai bi + (ai ⊕ bi )a j b j

cm = Gm−1: j + Pm−1: j c j = Gm−1:m−2 + Pm−1:m−2cm−2

= Gi : j + Pi : j cm−2 = Pi : j Gi : j + Pi : j cm−2 (4.12)

Hence, cm can obtained from cm−2 using only a single multiplexer of the carry chain
in the fast carry generator, which is in contrast to the standard ripple carry adder
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chain that computes cm from cm−2 using two multiplexers of the carry chain. Hence,
c8 can be obtained from c0 using carry-lookahead mechanism within a single slice
which is shown as follows:

c8 = P7:6G7:6 + P7:6c6
= P7:6G7:6 + P7:6[P5:4G5:4 + P5:4c4]
= P7:6G7:6 + P7:6[P5:4G5:4 + P5:4[P3:2G3:2 + P3:2c2]]
= P7:6G7:6 + P7:6[P5:4G5:4 + P5:4[P3:2G3:2 + P3:2[P1:0G1:0 + P1:0c0]]]

(4.13)

Thus (4.13) assumes the same form as (3.11) and can be compacted into a single
slice.

Equations (4.6)–(4.7) can bemodified to perform a subtraction operation by intro-
ducing the mode control input M where M is set to 0 for addition and 1 for subtrac-
tion. The mode control input goes as an additional input to the dual output LUTs
and the input carry of the carry chain in the L-RCA and the fast carry generator
architecture with no increase in hardware. In this case, the equations are re-modified
as Pi = ai ⊕ bi ⊕ M and Gi = ai (bi ⊕ M). Thus,

Pi : j = Pi Pj = (ai ⊕ bi ⊕ M)(a j ⊕ b j ⊕ M) (4.14)

Gi : j = Gi + Pi Gi−1: j = ai (bi ⊕ M) + (ai ⊕ bi ⊕ M)a j (b j ⊕ M)

= ai (ai ⊕ bi ⊕ M) + a j (a j ⊕ b j ⊕ M)(ai ⊕ bi ⊕ M) (4.15)

cm = Gi : j + Pi : j cm−2

= ai (ai ⊕ bi ⊕ M) + a j (a j ⊕ b j ⊕ M)(ai ⊕ bi ⊕ M) + Pi : j cm−2

= ai (ai ⊕ bi ⊕ M) + ai (ai ⊕ bi ⊕ M)(a j ⊕ b j ⊕ M)

+ a j (a j ⊕ b j ⊕ M)(ai ⊕ bi ⊕ M) + Pi : j cm−2

= [
(ai ⊕ bi ⊕ M) + (a j ⊕ b j ⊕ M)

] [ai (ai ⊕ bi ⊕ M)

+ a j (a j ⊕ b j ⊕ M)(ai ⊕ bi ⊕ M)] + Pi : j cm−2

= Pi : j Gi : j + Pi : j cm−2 (4.16)

The pipeline latency of the adder on a whole depends on the number of pipeline
stages for the H-RCA and the fast carry generator. The n/2-bit H-RCA requires
�n/8�−1 pipeline stages, while the n/2-bit fast carry generator requires �n/16�−1
pipeline stages. Overall, an n-bit fast carry adder requires �3n/16� − 1 pipeline
stages, including the pipeline stage between the fast carry generator and the H-RCA.

http://dx.doi.org/10.1007/978-81-322-2520-1_3
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4.2.5 Adder Implementation Results

The adder circuit has been compared for five design styles—the fast carry generator-
based adder [24], Hybrid RCA, FPGA fabric-based adder automatically generated by
the GUI utility of IP Core Generator in ISE, DSP slice-based adder, and the FloPoCo
generated adder.

The dashed entries in Table4.1 indicate that the equivalent results are either not
applicable or not reported in [24]. Note that our designs were pipelined, with the
number of pipeline stages as described in previous subsections. Although not explic-
itly mentioned in [24], the authors informed us through personal correspondence that
they inserted register banks in the fast carry adder only at the input and output ports
of the circuit to measure the frequency of the circuit.

In case of constrained placement, for adder designs upto 64 bits, the hybrid RCA
outperforms the fast carry generator-based adder design both in terms of speed and
area, but when it comes to realizing adders with higher operand widths (e.g., 96
and 128), which results in an increased vertical column height of slices, the fast
carry generator-based adder design gives marginally better speed performance at
the cost of extra hardware. The fast carry generator-based adder also has lower
latency than the Hybrid RCA. The important trend to note here is that in all cases,
constrained placement adders give substantially better performance than the corre-
sponding unconstrained placed adders of the same operand width. The FPGA fabric
adder generated using the GUI utility results in the worst performance, whereas
the DSP adders consume only DSP48E slices and operates at a reasonable speed.
FloPoCo adders have been generated by giving the same frequency of operation (as
constraints) which was achieved for the Pipelined Hybrid RCA on Virtex-5 platform
with constrained placement. It was however observed that the FloPoCo adders gen-
erated require double latency in comparison to the proposed circuits with increase
in hardware and PDP and is unable to satisfy the frequency constraints.

The compact implementation made possible through our design methodology is
not achievable for Xilinx IP Core-based designs for any latency or for FloPoCo
implementation with any frequency as obtained through our approach. In spite of the
available length-4 carry chain functionality, the two above-mentioned CAD tools fail
to register the carry chain output using a FF available in the same slice of the carry
chain, thereby resulting in an unoptimized inference of logic elements. This can be
observed from the Floorplan Editor of theXilinx ISE software, where the carry signal
is made to enter the global routing network to be routed to another slice to use its
flip–flop as a pipeline latch, and then route it to another slice to restart the carry chain.
This results in a random, haphazard floorplanning, whereby the logic elements are
arbitrarily placed into any available vacant slice. A possible reason might be that a
Virtex-5 logic slice does not support dedicated hardware for registering those signals,
and the CAD tool fails to infer the desired implementation.

With respect to power consumption, it is clearly evident from the results in
Table4.1, that for the same latency, fabric implementation of adders using Xilinx
IP Core realizes a circuit which has a higher PDP than the Hybrid RCA. The reasons
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attributed to this observation are the inefficient placement and routing of the adder
circuit, leading to higher delay and greater on-chip power dissipation. The fast carry
adder has a lower PDP due to shorter latency and lesser column height of slices
mapped on to the FPGA fabric, though the amount of hardware involved is more in
comparison to Hybrid RCA implementation. FloPoCo adders have higher PDP due
to higher latency and inefficient packing of logic into the FPGA fabric. The DSP
slice-based mode of implementation consumes the least power and has the lowest
latency, but cannot outperform the proposed architectures in terms of speed.

4.3 Absolute Difference Circuit Architecture

Absolute difference operation is required for certain image and video processing
algorithms, as well as for some arithmetic operations like finding out the Greatest
Common Divisor (GCD) of two numbers. For this circuit, we would assume that
both the input operands are unsigned integers.

4.3.1 Proposed Absolute Difference Circuit

The authors in [16] had proposed an architecture which is based on the compact
implementation on the FPGA fabric of the following expression:

AD =| A − B | =
{
(A − B), if A − B ≥ 0

(B − A), otherwise
(4.17)

If an n-bit less-than comparator generates a high signal if A < B, B − A is
computed, else A − B is computed by the absolute difference circuit. Each LUT
accepts 2-bit sub-words Ai :i−1 and Bi :i−1, each of which has no more than four
distinct inputs, and outputs two signals AeqBi :i−1 and AlessBi :i−1. AeqBi :i−1 = 1 if
Ai :i−1 = Bi :i−1 and AlessBi :i−1 = 1 if Ai :i−1 < Bi :i−1. AeqBi :i−1 drives the select
line of themultiplexer of the carry chain andAlessBi :i−1 is an input to themultiplexer
which is selected if AeqBi :i−1 = 0. If xi = Ai�Bi and xi−1 = Ai−1�Bi−1, then

AlessBi :i−1 = Ai Bi + xi Ai−1Bi−1 (4.18)

AeqBi :i−1 = xi xi−1 (4.19)

The architecture for the module establishing if A < B is shown in Fig. 4.7. The
output of this module A_l_B decides upon the operation A− B or B− A. For an n-bit
less-than comparator, its output A_l_Bn is obtained using the following recurrence
relation:

A_l_Bn = AeqBn:n−1AlessBn:n−1 + AeqBn:n−1A_l_Bn−2 (4.20)
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Fig. 4.7 Proposed absolute difference circuit [16]. a Module computing if A < B. b Module
computing absolute difference

where the base condition is A_l_B0 = 0. This recurrence relation bears exact resem-
blance to (3.11) making it an ideal candidate for carry chain implementation. When
A_l_Bn=1, B+A+1 is computed, else A+B+1 is computed, as shown in Fig. 4.7b,
where A and B are the 1’s complement of A and B, respectively.

4.3.2 DSP Slice-Based Absolute Difference Circuit

For a DSP slice-based implementation, as shown in Fig. 4.8, there are two (or more)
DSP slices, among which half the slices are configured as a subtractor (C −(A : B)),
and half the slices as an adder (C + (A : B)) which acts in a two’s complement
mode. The sign bit of the subtractor unit of DSP slice is used as the multiplexer
output to choose between the subtractor or the adder (two’s complement) output.
These 2:1 multiplexers and the NOT gates for realizing the two’s complement out-
puts are implemented using fabric logic. However, to realize an absolute difference
circuit for numbers with less than to 25 bits, a single DSP slice can be implemented
as an adder/logic unit in the Single Instruction Multiple Data (SIMD) Arithmetic
mode [21], which can be used to implement small add–subtract functions, with high
performance, less hardware, and lower power consumption. The adder-cum-logic
unit when used in the SIMD mode has two 24-bit fields, with one field computing
IN1 − IN2 and the other field computing IN2 − IN1. The sign bit of the first sub-
tractor result is used as the multiplexer select, and the output of the multiplexer is
the absolute difference value. The multiplexer is implemented in the fabric.

http://dx.doi.org/10.1007/978-81-322-2520-1_3
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Fig. 4.8 Xilinx Virtex-5 DSP slice-based absolute difference circuit [21]

The pipelined implementation of the absolute difference circuit has been shown
in Fig. 4.7a, b. The n-bit module establishing if A < B requires �n/8� − 1 pipeline
stages, while the n-bit module computing the absolute difference circuit requires
�n/4� − 1 pipeline stages. Overall, an n-bit absolute difference circuit requires
�3n/8� − 1 pipeline stages, including the pipeline stage between the two modules.
The n(>48)-bit DSP slice implementation requires �n/48� − 1 pipeline stages for
each DSP slice that has either been configured as an adder or a subtractor.

4.3.3 FloPoCo-Based Absolute Difference Circuit

FloPoCo (as of v 2.5.0) does not generate a dedicated absolute difference circuit.
However, it supports the functionality of a dual subtractor that takes X andY as inputs
and computes both X − Y and Y − X . The MSB (sign bit) of either result is input
to a 2:1 multiplexer and the absolute difference is obtained as depicted in Fig. 4.9. It
can be observed from the generated VHDL code that FloPoCo is unable to pipeline a
32-bit dual subtractor, whereas it can pipeline higher operand width dual subtractors,
though the pipelining is very irregular and unbalanced. For example, it pipelines a 96-
bit dual subtractor into five stages of 48, 12, 12, 12, and 12 bits. Thus the pipelining
philosophy adapted by FloPoCo for adders is completely different from that used
for a dual subtractor, and because of adopting an unbalanced pipelining strategy (the
motivation for which is difficult to understand), the user-specified target frequency
is no longer met.
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Fig. 4.9 Architecture for FloPoCo-based absolute difference circuit

4.3.4 Absolute Difference Circuit Implementation Results

The absolute difference circuit has been compared for three design styles—the
proposed design, DSP slice-based implementation, and FloPoCo-based implemen-
tation. The proposed design of the absolute difference circuit outperforms the DSP
mode of implementation in terms of speed. There is slight deterioration in perfor-
mance with increase in operand width for the proposed design. This might be due to
the complex routing of the final carry chain output from themodule detectingwhether
A < B, to all the LUT inputs of the module computing the absolute difference. How-
ever, for the DSP mode of implementation, the speed degradation with increase of
operand width is drastic. The DSP-based implementation requires additional fabric
logic to realize the equivalent functionality, but gives a lower PDP value. FloPoCo-
based implementation could not pipeline the 32-bit absolute difference circuit. The
frequency of operation for the 32-bit circuit was determined by inserting registers
at the inputs and outputs of the circuit. The higher bit-width realizations could not
be effectively pipelined by FloPoCo to achieve the desired speed given as the input
constraints (Table4.2).
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Table 4.2 Integer absolute difference circuit implementation results

Operand
width

Design style Freq
(MHz)

Latency
(#clk
cycles)

Power
delay
product
(nJ)

#FF #LUT #DSP #Slice

32 DSP slice
implementationa

500.00 4 0.20 0 64 2 24

FloPoCo-based
implementationb

284.41 1 0.10 160 96 0 40

Proposed
designa [16]

626.96 13 0.59 11 48 0 12

48 DSP slice
implementationa

500.00 4 0.25 0 96 2 42

FloPoCo-based
implementationb

542.59 2 0.35 108 239 0 110

Proposed
designa [16]

624.22 17 1.64 17 72 0 18

64 DSP slice
implementationa

295.25 6 0.48 0 128 4 56

FloPoCo-based
implementationb

337.95 4 1.19 196 328 0 176

Proposed
designa [16]

603.14 23 3.02 23 96 0 24

96 DSP slice
implementationa

278.16 6 0.70 0 192 4 87

FloPoCo-based
implementationb

407.83 4 1.60 320 486 0 230

Proposed
designa [16]

558.97 35 4.98 35 144 0 36

128 DSP slice
implementationa

381.68 8 1.24 0 256 6 101

FloPoCo-based
implementationb

279.96 5 3.41 512 685 0 331

Proposed
designa [16]

517.00 47 12.302 47 192 0 48

aIn the absolute difference circuit designwith constrained placement, an n-bit circuit had �3n/8�−1
pipeline stages. The authors in [16] had not pipelined the design and had presented results only for
a 32-bit implementation. For the DSP slice-based design, no pipelining was done if n < 48, while
if n > 48, the number of pipeline stages internal to the DSP slices were �n/48� − 1, and no FF
consumption was reported by the Xilinx synthesis tool
bFloPoCo can only generate a dual subtractor. User has to generate a multiplexer to decide upon
the absolute difference value
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4.4 Integer Multiplier Architecture

We now discuss the architectures for unsigned, two’s complement and combined
unsigned and two’s complement multiplication schemes. The advantage in realizing
a combined architecture lies in the fact that for an n-bit integer X , the same architec-
ture can support the operation for the range of −2n−1 ≤ X ≤ (2n−1 − 1) for two’s
complement integers, as well as the entire range of 0 ≤ X ≤ (2n − 1) for unsigned
integers. It is to be noted that the complete, detailed proofs for optimized unsigned
and two’s complement multiplication and squaring schemes are difficult to find in
the existing literature, as the optimizations are based on Boolean algebraic proper-
ties, which although not always trivially provable, are often accepted by intuition.
However, the detailed proofs provided by us give better insights into the effects of
the optimization steps on the corresponding hardware architectures.

In [5], a proof for correctness of a basic binary adder was presented. Subsequently,
an extension of this work was carried out by Feng et al. in [8] that presented formal
proofs of sequential and parallel prefix adders. These works were primarily inspired
by the fact that such complete formalism for adders are hard to find in any previously
published literature on computer arithmetic. In the subsequent sections, we carry
forward such analyses for integer multiplication and squaring operations.

4.4.1 Unsigned Integer Multiplier

Let two unsigned numbers of n-bit and m-bit, A (multiplicand) and B (multiplier)
have face values an−1an−2...a1a0 and bm−1bm−2...b1b0, respectively, and give rise
to a (m + n)-bit product P = pm+n−1 pm+n−2...p1 p0. The numerical values of A,
B, and P are

A =
n−1∑

i=0
ai2i , B =

m−1∑

j=0
b j2 j and P =

m+n−1∑

k=0
pk2k .

Theorem 4.1 The product of an n-bit unsigned integer multiplicand A with an m-bit
unsigned integer multiplier B is given by

Pus =
min(m,n)−1∑

i=0

ai bi2
2i +

n−1∑

i=1

min(i−1,m−1)∑

j=0

ai b j2
i+ j +

m−1∑

j=1

min( j−1,n−1)∑

i=0

ai b j2
i+ j .

Proof: Consider any partial product (PP) ax by . If x = y, we are considering
the “diagonal elements” of the PP array, which contributes to the sum given by

Pdiag =
min(m,n)−1∑

i=0
ai bi22i . Heremin(x, y) represents theminimum of two numbers

x and y. If x > y, we are referring to the PPs situated above the diagonal elements,

which contribute to the partial sum Pupper =
n−1∑

i=1

min(i−1,m−1)∑

j=0
ai b j2i+ j . Similarly,
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for x < y, we are referring to the PPs situated below the diagonal elements, which

contribute to the partial sum given by Plower =
m−1∑

j=1

min( j−1,n−1)∑

i=0
ai b j2i+ j . Finally,

Pus = Pdiag + Pupper + Plower

=
min(m,n)−1∑

i=0

ai bi2
2i +

n−1∑

i=1

min(i−1,m−1)∑

j=0

ai b j2
i+ j +

m−1∑

j=1

min( j−1,n−1)∑

i=0

ai b j2
i+ j (4.21)

For m = n, (4.21) becomes:

Pus =
n−1∑

i=0

ai bi2
2i +

n−1∑

i=1

i−1∑

j=0

ai b j2
i+ j +

n−1∑

j=1

j−1∑

i=0

ai b j2
i+ j (4.22)

The unsigned multiplier in general has mn PPs, and n2 PPs when m = n.
Equation. (4.22) is represented by the PP array of Fig. 4.10 for 6 × 6 unsigned
multiplier.

4.4.2 Two’s Complement Multiplier

When two signed numbers represented in the two’s complement system are to
be multiplied, the complexity of the algorithm increases as the sign of the num-
ber is embedded in the number itself. An iterative array algorithm for multipli-
cation of two’s complement numbers was proposed in [3]. Consider two two’s
complement integers A = an−1an−2. . .a1a0 and B = bm−1bm−2. . .b1b0, where

A = −an−12n−1 +
n−2∑

i=0
ai2i and B = −bm−12m−1 +

m−2∑

j=0
b j2 j , and their product

Ptc (= −pm+n−12m+n−1 +
m+n−2∑

k=0
pk2k) is represented as pm+n−1 pm+n−2. . .p1 p0.

We shall nowprove the two’s complement product P in the same light as suggested
in [13] for the original Baugh-Wooley Multiplication Algorithm [3]. The main idea is

Fig. 4.10 A 6 × 6 unsigned array multiplication
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to convert a two’s complement multiplication to an equivalent parallel array addition
problem in which all partial product bits are positive.

Theorem 4.2 The product of an n-bit two’s complement integer multiplicand A and
an m-bit two’s complement integer multiplier B is given by

Ptc = − 2m+n−1 + 2m−1 + 2n−1 + an−1bm−12
m+n−2 +

n−2∑

i=0

m−2∑

j=0

ai b j2
i+ j

+ 2n−1
m−2∑

j=0

an−1b j2
j + 2m−1

n−2∑

i=0

ai bm−12
i .

Proof:

Ptc =
(

−an−12
n−1 +

n−2∑

i=0

ai2
i

) ⎛

⎝−bm−12
m−1 +

m−2∑

j=0

b j2
j

⎞

⎠

=
⎛

⎝an−1bm−12
m+n−2 +

n−2∑

i=0

m−2∑

j=0

ai b j2
i+ j

⎞

⎠ −
⎛

⎝2n−1
m−2∑

j=0

an−1b j2
j + 2m−1

n−2∑

i=0

ai bm−12
i

⎞

⎠

=
⎛

⎝an−1bm−12
m+n−2 +

n−2∑

i=0

m−2∑

j=0

ai b j2
i+ j

⎞

⎠ −
⎛

⎝2n−1
m−2∑

j=0

2 j − 2n−1
m−2∑

j=0

an−1b j2
j

⎞

⎠

−
(

2m−1
n−2∑

i=0

2i − 2m−1
n−2∑

i=0

ai bm−12
i

)

= −2m+n−1 + 2m−1 + 2n−1 + an−1bm−12
m+n−2 +

n−2∑

i=0

m−2∑

j=0

ai b j2
i+ j + 2n−1

m−2∑

j=0

an−1b j2
j

+2m−1
n−2∑

i=0

ai bm−12
i (4.23)

Here, for any two bits p and q, the identities pq = 1–pq and
m−2∑

j=0
2 j = 2m−1 − 1

have been used. For m = n, (4.23) becomes:

Ptc = −22n−1 + 2n + an−1bn−12
2n−2 +

n−2∑

i=0

n−2∑

j=0

ai b j2
i+ j

+2n−1

⎛

⎝
n−2∑

j=0

an−1b j2
j +

n−2∑

i=0

ai bm−12
i

⎞

⎠ (4.24)

Equation (4.24) is represented by the PP array of Fig. 4.11 for 6 × 6 modified
Baugh–Wooley Multiplier [12, 15]. The two’s complement multiplier has (mn + 2)
PPs if m �= n, and (n2 + 2) PPs when m = n. The PP count is inclusive of the ‘1’s
present at the 2n and 22n−1 positions.
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Fig. 4.11 A 6 × 6 two’s complement array multiplication

4.4.3 Combined Unsigned and Two’s Complement Multiplier

The advantage in realizing a combined architecture lies in the fact that for an n-bit
integer X , the same architecture can support the operation for the range of −2n−1 ≤
X ≤ (2n−1 − 1) for two’s complement integers, as well as the entire range of
0 ≤ X ≤ (2n − 1) for unsigned integers. From Figs. 4.10 and 4.11, it can be
observed that the trend of partial product generation is same both for unsigned and
two’s complement multipliers. We introduce a control signal t which determines the
mode of operation of the multiplier. If t = 0, the circuit functions as an unsigned
multiplier, while for t = 1, the circuit behaves as a two’s complement multiplier.
This combined multiplier is shown in Fig. 4.12, where ̂ai b j = ai b j ⊕ t . On close
observation of (4.21) and (4.23), the product Pc for a combined multiplier can be
written as:

Fig. 4.12 A 6 × 6 combined array multiplication
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Pc = −2m+n−1t + 2m−1t + 2n−1t + an−1bm−12
m+n−2 +

n−2∑

i=0

m−2∑

j=0

ai b j2
i+ j

+ 2n−1
m−2∑

j=0

̂an−1b j2
j + 2m−1

n−2∑

i=0

̂ai bm−12
i (4.25)

For m = n, (4.25) can be written as:

Pc = −22n−1t + 2nt + an−1bn−12
2n−2 +

n−2∑

i=0

n−2∑

j=0

ai b j2
i+ j

+ 2n−1

⎛

⎝
n−2∑

j=0

̂an−1b j2
j +

n−2∑

i=0

̂ai bn−12
i

⎞

⎠ (4.26)

The combined multiplier thus has (mn + 2) PPs when m �= n, and (n2 + 2) PPs
when m = n. The PP count is inclusive of the control signal t present at the 2n and
22n−1 positions.

Multiplication operation involves generation of partial products and computing
the intermediate sum and carries. The entire multiplier can be envisaged to be com-
posed of identical sub-circuits, each capable of generating new partial products and
computing the partial sum and carries for every stage. Since each slice contains four
FFs, these intermediate partial sum and carry bits can be latched without consuming
extra slices, and given as input to the next stage, thereby achieving a carry-save
pipelined architecture. In such a situation, every carry chain can be configured as a
3-bit ripple carry adder, producing a 3-bit sum and 1-bit carry as shown in Fig. 4.14.
Such hybrid multipliers are termed as carry-save, pipelined, iterative array multipli-
ers. It should be noted that although in more advanced Xilinx FPGA families such
as Virtex-6/Virtex-7/Spartan-6 [18, 20, 23], each slice contains eight FFs, none of
these extra four FFs can be utilized to latch the final carry signal propagating from
the carry chain of the same slice, as no hardwired connection is present between the
final carry signal and the four extra FFs. Hence, we cannot achieve a more compact
architecture using Virtex-6, Virtex-7, or Spartan-6 FPGAs.

Addition of two PPs or a PP with a partial sum (denoted as Xi and Y j ) can be
achieved by exploiting the dual output LUTs and the carry chain. The O6 output of the
LUT computes the propagate function pl = Xi ⊕ Y j as shown in Fig. 4.13. The O5
output computes Y j . Let gl = Xi · Y j be the generate function. The corresponding
sum bit is then calculated by XOR-ing the LUT and MUXCY outputs as sr =
pl ⊕ ck = Xi ⊕ Y j ⊕ ck , where ck is the carry-in bit. Each MUXCY computes the
carry-out as:

coi = gl + pl · ck = Xi · Y j + (Xi ⊕ Y j ) · ck

= (Xi · Y j + Xi · Y j ) · Xi + (Xi ⊕ Y j ) · ck = pl · Xi + pl · ck (4.27)
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Fig. 4.13 Array multiplication depicting the grouping of partial products

An efficient implementation of carry-save addition in Spartan 3 FPGAs was
reported in [10]. A similar, but however, modified design philosophy has also been
extended for the carry save addition onVirtex-5 FPGAs. The additions at different bit
positions in the same row are carried out in parallel as shown in Fig. 4.13. However,
the last step, where the final partial sums and carries are to be added, can be tackled
carefully by performing a parallel bit-level carry-save pipelined addition, so that the
frequency bottleneck, which otherwise would have been imposed by a scheme such
as a large ripple-carry vector merging adder [15], can be avoided. For an A × B
multiplier, where each of A and B are n-bit wide, the number of pipeline stages can
be calculated to be (n − 2)+	n/3
.

A pipelined implementation of themultiplier requires correct timing synchroniza-
tion of the arrival of the partial products to the architecture. With the consideration
that if A and B are themultiplicand and themultiplier, respectively, all the ai bitsmust
be available after every clock cycle, whereas the bi bit is only required to arrive after
(i −1)th clock delay. We perform certain hardware optimizations by delaying all the
ai bits using FFs, whereas the bi th bit for i ≥ 2 is delayed using shift registers [4]
implemented using the SRLC32E primitive [22] which maps to a SLICEM LUT.
Since the priority for our designs is speed, with a slight modification, we implement
an n-bit delay for a multiplier bit by configuring the SLICEM LUTs to function as
an (n − 1)-bit shift register, and then using a FF available in the same slice to realize
the last unit of delay, as depicted in Fig. 4.2. The advantage of this scheme is that the
FF used simultaneously also serves to pipeline the architecture, without any overall
increase in the latency of the circuit. A similar design concept was also spelt out
for Xilinx Spartan-3 FPGAs in [19]. The output bits can be aligned following the
same design philosophy, with the FF and SLICEM LUT positions interchanged for
maximum speed. The addition of the partial products in the two topmost rows of the
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Fig. 4.14 Slice
configuration for partial
product addition in the first
row of Hybrid Carry Save
Multiplication

multiplication array (as shown in Fig. 4.13) can be achieved by using the dual output
LUTs to compute the two partial products to be added and configuring the carry chain
appropriately as depicted in Fig. 4.14 for addition of the partial products. Subsequent
partial products can be added with the partial sum and partial carry generated in the
previous row similarly.

From Fig. 4.13, it is evident that we have to realize underutilized adders (carry
chains and LUTs), thereby resulting in increase of hardware cost. Since the newer
FPGA families support huge fabric logic, this trade-off is acceptable to ensure higher
throughput. However, it must be noted that the circuit complexity for multiplier
has a strong dependence on operand width, as the number of partial products is
a quadratic function of the operand width. In such cases, custom implementations
demand higher hardware cost and greater PDP. The approach described so far is well
suited to operands of smaller bit-width. Higher bit-width implementations can be
realized using DSP slices, or a combination of DSP slices and fabric logic [1, 7] to
save on hardware and to have superior PDP, with some compromise in speed (always
lower than or equal to an operating frequency of 500 MHz for Virtex-5 FPGAs).
However, since DSP slices are relatively very few in number in comparison to fabric
logic slices, an alternative is to go for pure fabric logic-based implementation at
highest speed, but at higher hardware overhead and higher PDP.
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Fig. 4.15 Pipelined two’s
complement 25 × 18 DSP
multiplier [21]

4.4.4 DSP Slice-Based Signed Multiplier

EachXilinxVirtex-5DSP slice can perform25×18 two’s complementmultiplication
as shown in Fig. 4.15. The DSP slices have been configured to operate at the fastest
speedwith a latency of three clock cycles. The necessary OPMODE andALUMODE
settings are “0000101” and “0000”, respectively [21]. To perform the multiplication
of two numbers M and N , it is important to treat M as multiplicand and N as
multiplier if M has higher bit-width than N . Such a choice eventually leads to lesser
hardware and pipeline stages.

4.4.5 FloPoCo-Based Signed Multiplier

FloPoCo can also generate integer multiplier descriptions. However, FloPoCo is
unable to generate a pipelined multiplier in spite of the user specifying the target
operating frequency, but generates an erroneous comment in the VHDL code that it
has performed single-stage pipelining. This inability to pipeline has been reported by
us to the authors of [6]. The authors have admitted through personal correspondence
that a bug exists in the arithmetic core generation for integer multipliers, which they
have filed and are trying to solve that issue before the next release.

4.4.6 Multiplier Implementation Results

The proposed custom implementation of multipliers result in excess hardware to
achieve symmetric placement of logic blocks also leading to generation of partially
redundant carry chains that are configured as adders. The DSP multipliers come at
a lower hardware cost and lesser PDP. However, since DSP slices are much fewer
in number compared to available fabric logic slices, the use of DSP slices must be
done judiciously by ensuring as much complete utilization of each DSP slice con-
figured. Thus, fabric logic configuration may be a feasible option that guarantees
the maximum throughput for relatively smaller bit-width numbers. FloPoCo is how-
ever unable to generate pipelined integer multipliers and erroneously reports that it
has achieved a single stage pipelining. In such a situation, registers were placed at
appropriate locations to determine the operating frequency of the circuit (Table4.3).
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Table 4.3 Integer multiplier implementation results

Operand
width

Design style Freq
(MHz)

Latency
(#clk
cycles)

Power
delay
product
(nJ)

#FF #LUT #DSP #Slice

6 × 6 Fabric multiplier
(IP core)

564.65 6 0.26 82 84 0 29

DSP slice
multipliera

550.00 3 0.09 0 0 1 0

FloPoCo
multiplierb

230.47 1 0.04 24 60 0 16

Proposed
multipliera

714.29 6 0.25 77 93 0 27

9 × 9 Fabric multiplier
(IP Core)

565.93 10 0.60 119 124 0 39

DSP slice
multipliera

550.00 3 0.09 0 0 1 0

FloPoCo
multiplierb

173.34 1 0.08 36 122 0 37

Proposed
multipliera

699.30 10 0.70 187 244 0 64

12 × 12 Fabric multiplier
(IP Core)

529.10 14 1.13 191 188 0 65

DSP slice
multipliera

550.00 3 0.10 0 0 1 0

FloPoCo
multiplierb

161.06 1 0.07 48 191 0 55

Proposed
multipliera

678.43 14 1.53 343 453 0 124

15 × 15 Fabric multiplier
(IP Core)

527.70 18 2.21 295 288 0 92

DSP slice
multipliera

550.00 3 0.10 0 0 1 0

FloPoCo
multiplierb

156.15 1 0.09 60 288 0 84

Proposed
multipliera

668.45 18 2.83 545 727 0 202

aIn our proposed multiplier design for an A × B multiplier where A and B are both n-bit wide,
(n − 2) + 	n/3
 pipeline stages are required. The DSP slice-based multiplier had three pipeline
stages internal to the DSP slices, and no FF resource consumption was reported by the Xilinx
synthesis tool
bFloPoCo is unable to pipeline any of its multipliers. Frequency of operation was determined by
inserting registers at appropriate locations. This inability to pipeline has been reported by us to the
authors of [6]. The authors have admitted through personal correspondence that a bug exists in the
arithmetic core generation for integer multipliers which they have filed and are trying to solve that
issue before the next release
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4.5 Integer Squarer Architecture

Although mathematically the squaring operation is a special case of multiplica-
tion, integer squarer circuits can be built with lesser hardware overhead than integer
multipliers, by intelligent exploitation of the fact that squaring is an one-operand
operation [14]. An integer squarer circuit must be optimized such that the number of
partial products are reduced and the depth of the partial-product array is shortened.
Once all the optimizations are done, the same design philosophy is adhered to for
mapping the equivalent architecture on the slices of the target FPGA platform, as
in the case of integer multiplier. The identities used for optimization [11, 17] are
as follows: ai a j + a j ai = 2ai a j , ai ai = ai , and ai + ai ai−1 = ai ai−1 + 2ai ai−1
where ai , a j are given operand bits. The first identity aims at reducing the number
of partial products and depth of the squaring array, whereas the second and third
identities together can reduce the depth of the squaring array. We shall now prove
certain useful identities to establish the proof of correctness of squaring schemes.

Lemma 4.1 (ai + ai ai−1)2n = ai ai−12n + ai ai−12n+1

Proof:

L .H.S. = (ai + ai ai−1)2
n

= (ai (ai−1 + ai−1) + ai ai−1)2
n

= (ai ai−1 + ai ai−1 + ai ai−1)2
n

= ai ai−12
n + ai ai−12

n+1 (4.28)

Lemma 4.2 (1 + an−1a0)2n = an−1a02n + an−1a02n+1

Proof:

L .H.S. = (1 + an−1a0)2
n

= (an−1a0 + an−1a0 + an−1a0)2
n

= (an−1a0 + 2an−1a0)2
n

= an−1a02
n + an−1a02

n+1 (4.29)

Lemma 4.3 (ai + ai ai−1)2n = ai ai−12n+1 + ai ai−12n
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Proof:

L .H.S. = (ai + ai ai−1)2
n

= (ai (ai−1 + ai−1) + ai ai−1)2
n

= (ai ai−1 + ai ai−1 + ai ai−1)2
n

= (1 + ai ai−1)2
n

= (ai ai−1 + ai ai−1 + ai ai−1)2
n

= ai ai−12
n+1 + ai ai−12

n (4.30)

Lemma 4.4 −22n−1 + an−1an−222n−2 + an−122n−2 = −an−1an−222n−1

+ an−1an−222n−2

Proof:

L .H.S. = −22n−1 + an−1an−22
2n−2 + an−12

2n−2

= −22n−1 + an−1an−22
2n−1 + an−1an−22

2n−2 (using Lemma 4.3)

= (−1 + an−1an−2)2
2n−1 + an−1an−22

2n−2

= −an−1an−22
2n−1 + an−1an−22

2n−2 (4.31)

Lemma 4.5 (1 + a n
2

+ a n
2
a n

2−1)2
n = a n

2
a n

2−12
n + a n

2
2n+1

Proof:

L .H.S. = (1 + a n
2

+ a n
2
a n

2−1)2
n

= (a n
2

+ a n
2

+ a n
2

+ a n
2
a n

2−1)2
n

= (2a n
2

+ a n
2

+ a n
2
a n

2−1)2
n

= a n
2
2n+1 + (a n

2
+ a n

2
a n

2−1)2
n

= a n
2
2n+1 + (a n

2
(a n

2−1 + a n
2−1) + a n

2
a n

2−1)2
n

= a n
2
2n+1 + (a n

2
a n

2−1 + a n
2
. a n

2−1 + a n
2
a n

2−1)2
n

= a n
2
2n+1 + a n

2−1(a n
2

+ a n
2
)2n + a n

2
. a n

2−12
n

= a n
2
2n+1 + a n

2−12
n + a n

2
. a n

2−12
n

= (a n
2−1 + a n

2
)(a n

2−1 + a n
2−1)2

n + a n
2
2n+1

= (a n
2−1 + a n

2
)2n + a n

2
2n+1

= a n
2
a n

2−12
n + a n

2
2n+1 (4.32)
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4.5.1 Unsigned Squarers

An n-bit unsigned integer A = an−1an−2...a1a0 whose value is A =
n−1∑

i=0
ai2i , has its

squared value as S = A2, where S is obtained as follows [9, 11, 17], after applying
the logic identities for optimization to reduce the number of partial products and
the height of the multiplication array. The PP arrays for odd- and even-bit operand
unsigned squaring are shown in Figs. 4.16 and 4.17, respectively.

Theorem 4.3 The square of an n-bit unsigned integer A is given by

Sus = a0 +
n−1∑

i=1

(
ai ai−122i + ai ai−122i+1

) +
n−1∑

i=2

i−2∑

j=0
ai a j2i+ j+1.

Proof:

Sus =
(

n−1∑

i=0

ai2
i

)2

=
n−1∑

i=0

ai2
2i +

n−1∑

i=1

i−1∑

j=0

ai a j2
i+ j +

n−1∑

j=1

j−1∑

i=0

a j ai2
i+ j

=
n−1∑

i=0

ai2
2i + 2

⎛

⎝
n−1∑

i=1

i−1∑

j=0

ai a j2
i+ j

⎞

⎠ =
n−1∑

i=0

ai2
2i +

n−1∑

i=1

ai ai−12
2i +

n−1∑

i=2

i−2∑

j=0

ai a j2
i+ j+1

= a0 +
n−1∑

i=1

(ai + ai ai−1) 2
2i +

n−1∑

i=2

i−2∑

j=0

ai a j2
i+ j+1

= a0 +
n−1∑

i=1

(
ai ai−12

2i + ai ai−12
2i+1

)
+

n−1∑

i=2

i−2∑

j=0

ai a j2
i+ j+1 (4.33)

Post-optimization, the number of rows of PPs obtained on squaring an unsigned
integer with odd number of bits is n+1

2 , where the topmost row contains 2n PPs

Fig. 4.16 7-bit unsigned squaring matrices [17]. a Original matrix. b Modified matrix

Fig. 4.17 6-bit unsigned squaring matrices [17]. a Original matrix. b Modified matrix
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and the number of PPs decreases by 5 + 4(i − 1) with i increasing as we keep
approaching the bottom rows. Thus, the number of PPs is:

Nusodd = 2n +
n−1
2∑

i=1

[2n − (5 + 4(i − 1))] = n(n + 1)

2
+ 1 (4.34)

Similarly, for even-bit integer squaring, the number of rows of PPs post-
optimization is n

2 , where the topmost row contains 2n PPs and the number of PPs
decreases by 5+ 4(i −1)with i increasing as we keep approaching the bottom rows.
Thus, the number of PPs is:

Nuseven = 2n +
n
2−1
∑

i=1

[2n − (5 + 4(i − 1))] = n(n + 1)

2
+ 1 (4.35)

Clearly, Nusodd and Nuseven are smaller than n2 (the number of PPs for an unsigned
n × n multiplier). Figure4.16 shows 7 (odd)-bit unsigned squarer matrices, while
Fig. 4.17 shows 6 (even)-bit unsigned squarer matrices in accordance with (4.33).

4.5.2 Two’s Complement Squarers

A two’s complement integer A = an−1an−2...a1a0 has the value

A = −an−12n−1 +
n−2∑

i=0
ai2i . Next, we derive the expression for its square value

in the same light as was suggested in [13] for the original Baugh–Wooley’s two’s
complement multiplication [3], and applying the previously mentioned identities for
the overall hardware optimization [9, 11, 17].

Theorem 4.4 The square of an n-bit two’s complement integer A for odd n is given
by

Sto = −an−1an−222n−1 + an−1an−222n−2 + an−1a02n +
n−2∑

i=1
(ai ai−122i

+ ai ai−122i+1) +
n−3∑

i=1
an−1ai2n+i + an−1a02n+1 + a0 +

n−2∑

i=2

i−2∑

j=0
ai a j2i+ j+1.

For even n, the square value is given by

Ste = −an−1an−222n−1 + an−1an−222n−2 + a n
2
a n

2−12
n + a n

2
2n+1+

n
2−1∑

i=1

(
ai ai−122i + ai ai−122i+1

)+
n−3∑

i=0
an−1ai2n+i+

n−2∑

i= n
2+1

(
ai ai−122i + ai ai−122i+1

)

+
n−2∑

i=2

i−2∑

j=0
ai a j2i+ j+1 + a0.
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Proof:

A2 =
(

−an−12
n−1 +

n−2∑

i=0

ai2
i

)2

= an−1an−12
2n−2 +

n−2∑

i=0

n−2∑

j=0

ai a j2
i+ j −

n−2∑

i=0

ai an−12
n+i−1 −

n−2∑

i=0

an−1ai2
n+i−1
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i+ j +
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i=0
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−
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2n+i−1 (as x + x = 1,−x = x − 1)
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j=0

ai a j2
i+ j +
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ai an−12
n+i −
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ai a j2
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ai2
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Equation (4.36) is the starting point for deriving the final squared expressions for
odd and even-bit integers. For odd-bit integers, the final squared expression Sto can
be proved as follows:

Sto = −22n−1 + 2n + an−1a02
n +

n−3∑

i=1

an−1ai2
n+i + an−1an−22

2n−2 + a0 +
n−2∑

i=1

ai2
2i

+ an−12
2n−2 +

n−2∑

i=2

i−2∑

j=0

ai a j2
i+ j+1 + a1a02

2 +
n−2∑

i=2

ai ai−12
2i

(spli t ting the summation ranges of (4.36))
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= −22n−1 + an−1a02
n + an−1a02

n+1 +
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an−1ai2
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+
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ai2
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ai ai−12
2i (using Lemma 4.2)
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n +
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i=1

(ai + ai ai−1)2
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+
n−3∑

i=1

an−1ai2
n+i + an−1a02
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ai a j2
i+ j+1

(rearranging and grouping the terms)
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2n−2 + an−12
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n +
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i=1

(ai ai−12
2i + ai ai−12

2i+1)

+
n−3∑

i=1

an−1ai2
n+i + an−1a02

n+1 + a0 +
n−2∑

i=2
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j=0

ai a j2
i+ j+1 (using Lemma 4.1)

= −an−1an−22
2n−1 + an−1an−22
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i=1

(ai ai−12
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j=0

ai a j2
i+ j+1 (4.37)

(using Lemma 4.4)

Figure4.18 shows 7 (odd)-bit two’s complement squarer matrices in accordance
with (4.37).

For even values of n, the final squared expression Ste starting from (4.36) can be
proved as follows:

Ste = −22n−1 + 2n +
n−3∑

i=0

an−1ai2
n+i + an−1an−22

2n−2 + a0 +
n
2 −1
∑

i=1

ai2
2i + a n

2
2n

+
n−2∑

i= n
2 +1

ai2
2i + an−12

2n−2 +
n−2∑

i=2

i−2∑

j=0

ai a j2
i+ j+1 +

n−2∑

i=1

ai ai−12
2i

Fig. 4.18 7-bit two’s complement squaring matrices [17]. a Original matrix. b Modified matrix
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(splitting the summation ranges of (4.36))
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2
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i=2
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(using Lemma 4.4)

= −an−1an−22
2n−1 + an−1an−22

2n−2 + a n
2

a n
2 −12

n + a n
2
2n+1 +

n
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∑

i=1

(ai + ai ai−1) 2
2i

+
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i=0
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n+i +
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(ai + ai ai−1) 2
2i +
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i=2
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(using Lemma 4.5)

= −an−1an−22
2n−1 + an−1an−22

2n−2 + a n
2

a n
2 −12

n + a n
2
2n+1

+
n
2 −1
∑

i=1

(
ai ai−12

2i + ai ai−12
2i+1

)
+

n−3∑

i=0

an−1ai2
n+i +

n−2∑

i= n
2 +1

(
ai ai−12

2i + ai ai−12
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)

+
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ai a j2
i+ j+1 + a0(using Lemma 4.1) (4.38)

Fig. 4.19 6-bit two’s complement squaring matrices [17]. a Original matrix. b Modified matrix
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Fig. 4.19 shows 6 (even)-bit two’s complement squarer matrices in accordance with
(4.38).

The number of PPs obtained on squaring an n-bit two’s complement integer is
Nusodd + 1 for odd n, and Nuseven for even n, both of which are lower than (n2 + 2)
(for an n × n two’s complement multiplier).

4.5.3 Combined Unsigned and Two’s Complement Squarer

A control signal t is defined where t = 1 for two’s complement squaring and t = 0
for unsigned squaring. p̂ is used to denote p ⊕ t and “|” denotes the Boolean OR
operation. Thus, for an odd-bit integer, its combined squared expression Sco can be
written as follows, after closely observing (4.33) and (4.37):

Sco = − (an−1an−2|an−1t) 22n−1 + ̂an−1an−22
2n−2 + an−1a02

n+
n−2∑

i=1

(
ai ai−12

2i + ai ai−12
2i+1

)

+ an−1a0t2n+1 +
n−3∑

i=1

ân−1ai2
n+i +

n−2∑

i=2

i−2∑

j=0

ai a j2
i+ j+1 + a0 (4.39)

Figure4.20 shows 7 (odd)-bit combined squarer matrices in accordance with
(4.39).

Similarly, for even-bit integer, its combined squared expression Sce can be written
as follows, after closely observing (4.33) and (4.38), where “|” denotes the Boolean
OR operation, and ̂ai b j = ai b j ⊕ t :

Sce = − (an−1an−2|an−1t) 22n−1 + ̂an−1an−22
2n−2 + ̂a n

2
a n

2 −12
n + a n

2

(
t |a n

2 −1

)
2n+1

+
n
2 −1
∑

i=1

(
ai ai−12

2i + ai ai−12
2i+1

)
+

n−2∑

i= n
2 +1

(
ai ai−12

2i + ai ai−12
2i+1

)

+
n−3∑

i=0

ân−1ai2
n+i +

n−2∑

i=2

i−2∑

j=0

ai a j2
i+ j+1 + a0 (4.40)

They combined unsigned and two’s complement squaring arrays have the same
number of PPs as the two’s complement squaring arrays. Fig. 4.21 shows 6 (even)-bit
combined squarer matrices in accordance with (4.40).

The implementation of optimized squarers following the mathematical analy-
ses presented above has been done using the convention of carry-save, pipelined

Fig. 4.20 7-bit combined squaring matrices [17]. a Original matrix. b Modified matrix



4.5 Integer Squarer Architecture 65

Fig. 4.21 6-bit combined squaring matrices [17]. a Original matrix. b Modified matrix

approach. For an A × A combined unsigned and two’s complement squarer where A
is an n-bit number, 	n/2
+	n/3.6
 pipeline stages are required when n is odd, and
	n/2
 − 1 + 	n/3.6
 pipeline stages when n is even. Thus, the number of pipeline
stages for a squarer is lesser than the number of pipeline stages for an n×n combined
unsigned and two’s complement multiplier (n − 2 + 	n/3
). It is to be noted that
(4.37)–(4.40) have been wrongly stated in [17] where the PP at the sign bit position
should have had the opposite polarity and the upper limit of the summation range of
the terms (an−1ai2n+i ) of (4.37) and (4.38), and (ân−1ai2n+i ) of (4.39) and (4.40)
should have been (n − 3) instead of (n − 2).

We adopt a similar approach of carry-save pipelined addition for adding the partial
products for squaring as was done for multiplication. The grouping of the partial
products for the squarer implementation has been shown in Fig. 4.22, where each
carry chain of a slice can be configured as a 3-bit adder generating a 3-bit sum and
1-bit carry. Since squaring is essentially a one-operand operation, and mostly all
the operand bits are required at every stage of the pipelined addition, we realize the
delays using FFs. Hence, the SRLC32E primitives are no longer required, in contrast
to multiplier circuits.

4.5.4 DSP Slice-Based Squarers

DSP multipliers can also be configured to function as squarers. With the help of
a simple trick, we can optimize usage of DSP multipliers to realize multipliers or
squarers. For example, a 19× 19 squarer can be realized using a single DSP 25× 18

Fig. 4.22 Array squaring depicting the grouping of partial products
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Fig. 4.23 Squaring extension by one 1 bit in DSP slice for 19 × 19 bit squaring [21]

Fig. 4.24 DSP-based squarer for 22 × 22 operand width

multiplier, where the final output is realized by concatenating the LSB of the input
operand at the LSB position of the DSP slice output. To realize such an operation,
the OPMODE and ALUMODE inputs [21] can be set as “0110101” and “0000”,
respectively. This holds as the square of an odd number is odd, and the square of
an even number is even, and is illustrated in Fig. 4.23. The adder present in the
DSP slice multiplier performs addition of the first row of partial products with the
remaining partial product array. DSP slices can be cascaded for realizing higher order
multiplications and squaring. Figure4.24 shows the DSP slice implementation for
a 22-bit squarer. Here, the OPMODE input [21] of the lower and upper DSP slices
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can be set as “0000101” and “1010101”, respectively. The ALUMODE [21] input,
however is “0000” for both the DSP slices.

Just as in the case for multipliers, custom architectures like the ones developed
here demand higher hardware cost and greater PDP even for squarers. The approach
described so far can be well suited to numbers of smaller bit-width. Higher bit-width
implementations must be realized using DSP slices or a combination of DSP slices
and fabric logic [1, 7] to save on hardware and PDPwith some compromise on speed
(Table4.4).

4.5.5 FloPoCo-Based Squarers

FloPoCo can also generate integer squarers, but is unable to pipeline squarers with
input operand width that is less than 13. Again, the pipelined design descriptions
generated for higher operand widths are unable to match the user specified operating
frequency.

4.5.6 Squarer Implementation Results

The proposed custom implementation of squarers guarantees higher speed and lower
hardware cost in comparison to the IP Core-based fabric squarer and FloPoCo-
based circuit. Actually, IP Core-based fabric implementation does not support squar-
ers explicitly—the multipliers with both its inputs tied together realize the squar-
ers. Again, DSP slice-based squarers come at a lower hardware cost and lesser
PDP. FloPoCo is unable to pipeline 7 × 7 and 13 × 13 squarers, registers have
been added at appropriate locations to realize the operating frequency of those two
implementations.

4.6 Universal Shift Register Architecture

4.6.1 Universal Shift Register

A Universal Shift Register has bidirectional shifting as well as parallel load capa-
bilities. The block diagram showing the basic building blocks of the architecture is
shown in Fig. 4.25 and its functionality has been tabulated in Table4.5. The inputs
S1 and S0 control the mode of operation of the registers. The shift-left and shift-right
functionality can be used to realize multiplication and division operation by two,
respectively. Other functionality involves loading of external data to all the FFs of
the register in parallel, and also retaining the previous output data in the subsequent
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Table 4.4 Integer squarer implementation results

Operand
width

Design style Freq
(MHz)

Latency
(#clk
cycles)

Power
delay
product
(nJ)

#FF #LUT #DSP #Slice

7 × 7 Fabric
squarer (IP
core)

623.44 4 0.24 80 63 0 27

DSP slice
squarera

550.00 3 0.09 0 0 1 0

FloPoCo
squarerb

242.48 1 0.04 20 60 0 20

Proposed
squarera

706.71 4 0.13 49 39 0 17

13 × 13 Fabric
squarer (IP
core)

521.38 9 0.99 228 235 0 76

DSP slice
squarera

550.00 3 0.09 0 0 1 0

FloPoCo
squarerb

154.08 1 0.09 207 38 0 61

Proposed
squarera

673.85 9 0.64 201 149 0 65

19 × 19 Fabric
squarer (IP
core)

507.87 14 2.76 471 464 0 150

DSP slice
squarera

500.00 3 0.12 48 1 1 12

FloPoCo
squarerb

324.99 4 0.58 114 574 0 177

Proposed
squarera

652.32 14 1.79 449 331 0 139

22 × 22 Fabric
squarer (IP
core)

464.47 16 3.56 585 602 0 165

DSP slice
squarera

500.00 3 0.24 0 0 2 0

FloPoCo
squarerb

129.25 4 0.94 142 713 0 211

Proposed
squarera

643.50 16 2.49 583 433 0 185

aIn our proposed squarer design for an A × A squarer where A is an n-bit number, there are
	n/2
 + 	n/3.6
 pipeline stages when n is odd, and 	n/2
 − 1 + 	n/3.6
 pipeline stages when n
is even. The DSP slice-based multiplier had three pipeline stages internal to the DSP slices, and no
FF resource consumption was reported by the Xilinx synthesis tool
bFloPoCo is unable to pipeline the 7×7 and13×13 squarers. Frequency of operationwas determined
by inserting registers at appropriate locations
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Fig. 4.25 Universal shift register

Table 4.5 Function table of
universal shift register

Mode control Register operation

S1 S0

0 0 Parallel load

0 1 Shift left

1 0 Freeze data

1 1 Shift right

clock cycle(s). The combinational logic block deciding the functionality of the reg-
ister can be implemented using the 6-input LUT where all the six inputs of the LUT
are fully utilized.

Currently, FloPoCo (v 2.5.0) does not generate HDL for universal shift registers
(Table4.6).

4.6.2 Universal Shift Register Implementation Results

TheUniversal ShiftRegister implementationhas been compared for the design imple-
mented following the proposed constrained placement methodology, and the design
implemented using behavioral modeling. It was observed from the physical imple-
mentation that design inferred from the behavioral model had the programmed slices
placed in a very irregular pattern on the FPGA fabric. The superior PDP results
obtained for constrained placement design can be completely attributed to the regu-
lar and compact placement of the slices on FPGA. This significantly reduces routing
complexity and consequently has lower PDP. The FPGA routing is based on pro-
grammable switch routing and the MOSFET switches which actually control the
routing are responsible for maximum power dissipation. FloPoCo does not support
universal shift register implementations till its latest release.
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Table 4.6 Universal shift register implementation results

Power
operand
width

Design style Freq (MHz) Delay
product (pJ)

#FF #LUT #Slice

32 Behavioral 921.66 38.24 32 32 8

Proposed 1039.50 27.58 32 32 8

48 Behavioral 886.52 48.21 48 48 12

Proposed 1042.75 44.55 48 48 12

64 Behavioral 815.00 60.54 64 64 16

Proposed 1042.75 41.47 64 64 16

96 Behavioral 516.26 107.95 96 96 24

Proposed 1039.50 57.48 96 96 24

128 Behavioral 654.02 132.41 128 128 32

Proposed 1041.67 128.81 128 128 32

4.7 Summary

All our implementation results clearly reveal that the proposed design methodology
outperforms all other modes of implementation. This is achieved primarily due to
two reasons: (a) correct instantiation of logic elements, (b) constrained placement of
logically related fabric elements in adjacent locations with closest proximity, where
the proximity of bit indices imply physical proximity of the logic blocks on the FPGA
fabric. A partial floorplan view for a 128-bit adder is shown in Fig. 4.26 and is shown

Fig. 4.26 Partial floorplan views for 128-bit adder for fabric IP Core-based adder and hybrid RCA
with constrained placement. a Partial Floorplan of IP Core-based Fabric Adder with unconstrained
placement. b Partial Floorplan of Hybrid RCA with constrained placement



4.7 Summary 71

for two different implementation modes: Fabric IP Core-based 128-bit adder with
unconstrained placement, and a 128-bit Hybrid RCA with primitive instantiation
and constrained placement. From this figure, it is clearly evident that the CAD tool
performs a random unoptimized placement coupled with unoptimized inference of
logic elements.

The next chapter describes implementations of two controlpath circuits—a com-
parator and a loadable bidirectional counter, using the technique of direct primitive
instantiation coupled with constrained placement.
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Chapter 5
Architecture of Controlpath Circuits

Abstract This chapter explores the mathematical analyses and bit-sliced architec-
tures of the pipelined implementations of two controlpath circuits: integer com-
parator and loadable bidirectional counter supported by the FlexiCore CAD tool
currently.

5.1 Introduction

Integer comparators and loadable bidirectional counters (Finite State Machines
(FSMs)) have regular structures. The architecture of the circuits, as well as the
Boolean algebraic mathematical analyses to justify all the proposed architectures
have been explained in detail. The design automation of the circuits using the Flex-
iCore tool has also been discussed.

The rest of the chapter is organized as follows. In Sect. 5.2, we present the archi-
tectural details, Boolean logic analyses, and implementation results for an integer
comparator. Section5.3 presents the details of a loadable, bidirectional counter that
detects terminal count along with its Boolean logic analyses and implementation
results. We conclude in Sect. 5.4.

5.2 Integer Comparator Architecture

Comparator is awidelyused circuit for control path implementations.The comparator
design proposed by us accepts a pair of two n-bit unsigned numbers A and B, and
generates active-high outputs depending on whether A is greater than, equal to, or
less than B.

5.2.1 Proposed Comparator Architecture

The LUT and gate-level architectures of the proposed comparator design are shown
in Figs. 5.1 and 5.2, respectively. For themodule detecting the condition A < B, each

© Springer India 2016
A. Palchaudhuri and R.S. Chakraborty, High Performance Integer Arithmetic
Circuit Design on FPGA, Springer Series in Advanced Microelectronics 51,
DOI 10.1007/978-81-322-2520-1_5
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Fig. 5.1 LUT-level architecture of the comparator

LUT in a slice accepts 2-bit sub-words Ai :i−1 and Bi :i−1 with i ranging from 0 to
n − 1, and generates the outputs Aeq Bi :i−1 and Aless Bi :i−1. The output Aeq Bi :i−1
is 1 if Ai :i−1 = Bi :i−1, and is used as the select signal of the multiplexer MUXCY,
whereas Aless Bi :i−1 = 1 if Ai :i−1 < Bi :i−1, which is also an input to themultiplexer
that is selected if Aeq Bi :i−1 = 0 [1]. For an n-bit less-than comparator, its output
A_l_Bn is obtained using the following recurrence relation:

A_l_Bn = Aeq Bn:n−1Aless Bn:n−1 + Aeq Bn:n−1A_l_Bn−2 (5.1)

where the base condition is A_l_B0 = 0. This recurrence relation bears exact resem-
blance to (3.11) making it an ideal candidate for carry chain implementation.

http://dx.doi.org/10.1007/978-81-322-2520-1_3
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Fig. 5.2 Gate-level architecture of the comparator

For the module detecting the equality condition A = B, each LUT accepts two
3-bit binary words Ai :i−2 and Bi :i−2 and outputs Aeq Bi :i−1 which goes high when
Ai :i−2 = Bi :i−2. This output is connected to the select line input of the multiplexer
of the carry chain. The carry chain has been configured in such a way so that it can
logically function as a wide input AND gate. For an n-bit equality comparator, its
output A_eq_Bn is obtained using the following recurrence relation:

A_eq_Bn = A_eq_Bn:n−2A_eq_Bn−2

= A_eq_Bn:n−2 · 0 + A_eq_Bn:n−2A_eq_Bn−2 (5.2)

where the base condition is A_eq_B0 = 1. This recurrence relation also bears exact
resemblance to (3.11), making it an ideal candidate for carry chain implementation.
The output of the two modules A_lt_B and A_eq_B is fed to a NOR gate (real-
ized using LUT) to obtain A_gt_B, which goes high when A > B. For an n-bit
comparator, �n/8� pipeline stages are required.

The unsigned comparator architecture can be extended to handle signed numbers,
without disturbing the original architecture. The equality comparator for signed and
unsigned numbers is identical. However, the less-than comparator is made to accept

http://dx.doi.org/10.1007/978-81-322-2520-1_3
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Fig. 5.3 Additional circuitry
for unsigned comparator to
handle two’s complement
integers

the lower (n − 1) bits and its output (A < B)n−2:0 is fed to the inputs of a 4 : 1
multiplexer as shown in Fig. 5.3. The select lines to the multiplexer are the sign bits
of the input integers. If the select lines are of opposite polarity, the integer with
MSB = 1 is automatically the smaller integer and the less-than comparator takes the
required decision. If the select lines are of same polarity, the final output is the output
of the (n − 1)-bit unsigned comparator, (A < B)n−2:0, as shown in Table5.1. This
4 : 1 multiplexer shown in Fig. 5.3 has no more than three distinct inputs and can be
realized using a single LUT.

5.2.2 DSP Slice-Based Comparator

Comparators can also be designed using DSP48E slices and n-bit comparators with
n > 48 can be realized by cascading �n/48� DSP48E slices along a column. To
achieve the desired functionality, the slices have been configured as a signed mag-
nitude subtractor and pattern detector each by setting the attributes “OPMODE”
as “0110011”, and “ALUMODE” as “0011” [4]. However, it is to be noted that
comparators realized using DSP48E slices handle signed numbers unlike that of the

Table 5.1 Functionality of two’s complement comparator

Sign bits Output

An−1 Bn−1 (A < B)n−1:0
0 0 (A < B)n−2:0
0 1 0

1 0 1

1 1 (A < B)n−2:0
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Fig. 5.4 Xilinx Virtex-5 DSP slice-based comparator [4]

proposed comparator design which handles unsigned numbers. Figure5.4 illustrates
the DSP slice-based comparator architecture [4]. If the DSP48E slice is configured
to perform a subtraction and the pattern detector is used, then C > (A : B) and
C = (A : B) can be simultaneously detected. The sign bit of the output P indi-
cates whether A : B is greater than or less than C . The PATTERNDETECT output
indicates whether (A : B) − C == 0. The outputs detecting A = B and A < B
are subsequently passed through a NOR gate to determine if A > B. Comparators
of higher word length (n > 48) are realized by cascading DSP slices along a col-
umn. In such cases, the equality check is achieved by AND-ing the corresponding
PATTERNDETECT outputs.

It is to be noted that till the latest release (v 2.5.0), FloPoCo does not support
comparators.

5.2.3 Comparator Implementation Results

The proposed comparator design with constrained placement exhibits superior
operand width scalability in terms of speed. However, Xilinx IP Core-based com-
parator is not supported for Xilinx Virtex-5 FPGA, device family XC5VLX330T,
package FF1738, and speed grade-2 using the Xilinx ISE 12.4 design environment,
and hence its performance could not be reported. The DSP slice-based comparators,
on the other hand, give a lower speed performance in comparison to the proposed
fabric logic, but give the best PDP. FloPoCo does not support comparator implemen-
tation till its latest release (Table5.2).
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5.3 Loadable Bidirectional Binary Counter Architecture

Binary counter is a fundamental component of many controlpath implementations.
The most desirable features of a counter are: it should be resettable, loadable,
reversible (up/down counter), count-enabled, can be read on-the-fly, and be able
to detect terminal count [2].

5.3.1 Proposed Counter Architecture

An up/down counter can be realized as a combination of a D-FF-based Parallel-
In Parallel-Out (PIPO) register and an incrementer/decrementer, which accepts the
output of the register as its input, and feedbacks its outputs to the input of the register.
If the counter outputs as indicated by the FF outputs are Qn−1Qn−2. . .Q1Q0, then
the logic equations for the inputs of the FFs for an up counter are:

D0 = Q0 (5.3)

Di = Qi ⊕ (Qi−1Qi−2. . .Q1Q0) if i ≥ 1 (5.4)

Similarly, the logic equations for the FF inputs for a down counter are defined by:

D0 = Q0 (5.5)

Di = Qi ⊕ (Qi−1 + Qi−2 + · · · + Q1 + Q0) if i ≥ 1 (5.6)

Equations (5.4) and (5.6) suggest that awideANDandOR logic has to be realized,
which can be configured using the carry chain as shown in Fig. 5.5. In this figure,
larger counters can be realized by successive cascading of the “Stage 1” block. The
PIPO register has been realized using the “FDRSE” Xilinx primitive which is a
D-FF with synchronous reset and set and clock enable. Pipeline latency affects the
correct functionality of the counters and cannot be tolerated in a counter design, as
the inputs to the PIPO register come at a specific instant of time, but output values are
expected to be obtained in the following clock cycle. Hence, the pipelined latches
are realized using the “FDCPE” Xilinx primitive [3] which is a D-FF with clock
enable and asynchronous preset and clear. These FFs are presetted if the output from
the previous carry chain of the adjacent slice is high and cleared if low. For an n-bit
counter, �n/4� − 1 asynchronous pipeline stages are required.

The basic building block of this architecture is a 4-bit counter realized within a
single slice. The logic functionality of accepting a new data DATAi , when the “load
control” signal LD to load external data to the FFs is high, and accepting the output
from the FFs when LD is low, along with the XOR operation, is taken care of by the
6-input LUT configured as:

O6 = (LD · Qi + LD · DATAi ) ⊕ UP/DOWN (5.7)
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Fig. 5.5 Architecture for loadable, up/down counter targeted toward Xilinx Virtex-5 FPGA
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where the counter counts up if UP/DOWN = 0, and down if UP/DOWN = 1. In
other words, when the control signal UP/DOWN = 0, the carry chain is configured
as a wide AND gate, and when the control signal UP/DOWN = 1, the carry chain
is configured as a wide OR gate.

The terminal count is detected by the carry output of the most significant carry
chain. As the external data to be loaded into the register is not supplied directly to the
input of the FFs, but comes from the output of the incrementer/decrementer logic,
the user must send the value (x − 1) in case she wants to load an up counter with the
value x , or send (y + 1) in case she wants to load a down counter with the value y.

5.3.2 DSP Slice-Based Counter

Just like adders and multipliers, counters can also be designed using DSP48E slices.
n-bit counters with n > 48 can be realized by cascading �n/48�DSP48E slices along
a column, as shown in Fig. 5.6. To achieve the desired functionality, the slices have
been configured as a 48-bit accumulator each by setting the attributes “OPMODE”
as 0101100, and “ALUMODE” as 0000 for addition and 0011 for subtraction [4].
The additional usage information to be taken note of here is that while the counter is
operating as a down counter and the user wants to load the registers with the value
x , she must send the two’s complement of x as the input.

Currently, FloPoCo (v 2.5.0) does not generate HDL description for counters.

5.3.3 Counter Implementation Results

The routing complexity for the proposed counter architecture is comparatively
involved in comparison to adders, as there exists a feedback path from the out-
put of the FFs to the input of the LUTs. Operating frequencies for both the counter

Fig. 5.6 Xilinx Virtex-5 DSP slice-based counter [4]
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synthesized from behavioral description and that generated through the GUI utility
deteriorate steadily with increase in the number of output bits, which is undesirable.
In contrast, the proposed design shows only a relatively minor degradation in perfor-
mance with increase in the number of counter output bits. The proposed design also
outperforms the non-pipelined behavioral counter for most cases in terms of PDP
and the fabric counter gave the worst PDP performance. FloPoCo however does not
support counter implementations till its latest release (Table5.3).

5.4 Summary

All our implementation results for the integer comparator and loadable bidirectional
counter indicate superior operand width scalability with respect to frequency. It can
thus again be concluded that constraining the placement of the circuit building blocks

Table 5.3 Counter implementation results

Operand
width

Design style Freq
(MHz)

Power delay
product (pJ)

#FF #LUT #DSP #Slice

32 Behavioral counter 504.80 48.67 32 49 0 15

Fabric counter (IP Core) 536.19 50.52 32 47 0 14

DSP slice countera 550.00 35.65 0 0 1 0

Proposed countera 587.89 37.30 39 41 0 17

48 Behavioral Counter 400.32 43.39 48 70 0 29

Fabric counter (IP core) 427.35 59.09 48 69 0 30

DSP slice countera 550.00 40.80 0 0 1 0

Proposed countera 567.21 57.10 59 61 0 25

64 Behavioral counter 367.51 53.33 64 94 0 32

Fabric counter (IP core) 387.59 67.47 64 93 0 39

DSP slice countera 500.00 50.46 0 0 2 0

Proposed countera 565.61 59.85 79 81 0 33

96 Behavioral counter 292.65 89.08 96 139 0 46

Fabric counter (IP core) 298.95 84.39 96 137 0 43

DSP slice countera 500.00 61.64 0 0 2 0

Proposed countera 562.75 72.59 119 121 0 48

128 Behavioral counter 231.70 121.02 128 186 0 64

Fabric counter (IP core) 246.49 119.03 128 184 0 67

DSP slice countera 500.00 79.30 0 0 3 0

Proposed countera 563.70 111.12 159 161 0 64
aIn our proposed counter designwith constrained placement, an n-bit counter had �n/4�−1 pipeline
stages. For the DSP slice-based counter, no pipelining was done if n < 48, while if n > 48,
the number of pipeline stages internal to the DSP slices were �n/48� − 1, and no FF resource
consumption was reported by the Xilinx synthesis tool
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is crucial in improving the circuit performance, and the regularity of the proposed
designs is sufficient to automate their design. In the next chapter, we shall explore
the implementation of Cellular Automata-based Pseudorandom Sequence Generator
on FPGAs, using the methodology proposed so far.

References

1. Perri, S., Zicari, P., Corsonello, P.: Efficient absolute difference circuits in Virtex-5 FPGAs.
In: Proceedings of the15th IEEEMediterranean Electrotechnical Conference (MELECON), pp.
309–313 (2010)

2. Stan,M.R., Tenca,A.F., Ercegovac,M.D.: Long and fast up/downcounters. IEEETrans.Comput.
47(7), 722–735 (1998)

3. Xilinx Inc.: Virtex-5 libraries guide for HDL designs, UG621 (v11.3). http://www.xilinx.com/
support/documentation/sw_manuals/xilinx11/virtex5_hdl.pdf Cited 6 Sep 2009

4. Xilinx Inc.: Virtex-5 FPGA xtremeDSP design considerations user guide, UG193 (v3.5). http://
www.xilinx.com/support/documentation/user_guides/ug193.pdf Cited 26 Jan 2012

http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/virtex5_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/virtex5_hdl.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf
http://www.xilinx.com/support/documentation/user_guides/ug193.pdf


Chapter 6
Compact FPGA Implementation
of Linear Cellular Automata

Abstract Cellular Automata (CA) have been proposed as popular VLSI primitives
owing to their regular, cascadable structure, and supposedly local interconnects.
However, rather surprisingly, the published literature does not stress that the regular-
ity and locality of interconnects is often more logical rather than being of physical
nature, and requires proper design methodologies to harness the advantage of CA
in practical circuits. We address this issue with a case study of a one-dimensional
(1-D) CA, and develops a methodology for the physical realization of such circuits.
The main idea is to make optimal use of the underlying architecture, especially the
hardware logic resources available in the FPGA slices, coupled with direct primitive
instantiation and constrained placement of the logic elements.

6.1 Introduction

The regular, modular and cascadable structure of cellular automata (CA) with only
local neighborhood dependence of the cells are the attractive features that makes it
suitable for VLSI implementation [7, 8, 12]. Although theoretically CAs are attrac-
tive enough, in practice, their implementation on FPGAs often turn out to be ineffi-
cient, because usually the user has limited control on the inference of logic elements,
along with their placement and routing. Moreover, the CAD algorithms that perform
these steps in a FPGA typically have some probabilistic metaheuristic components
(e.g., simulated annealing) [2], which make the performance of a given design when
implemented on a given FPGA platform somewhat unpredictable. Hence, it cannot
be guaranteed that connected CA cells in logical proximity would actually have a
very short length of interconnect between them, when implemented physically.

In the past, CA circuits have been proposed for test pattern generation and con-
struction of Built-In Self-Test (BIST) structures within VLSI chips [14]. Since these
structures are based on simple rules and amenable to fast designs, high-performance
hardware implementation of CA algorithms has always been an important research
topic over the years. Previously, when the current advanced FPGA families were not
available, a new FPGA architecture supporting 5-input 3-output AND-XOR-based
logic blocks alongwith an efficientmultilevelAND-XOR logicminimization scheme
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was proposed for efficient implementation of Cellular Automata Array (CAA) [6].
In [10], the authors demonstrated faster implementation of CA on FPGA hardware,
compared to optimized software implementation by achieving a speedup in the range
of 14–19.A methodology for VLSI implementation of CA algorithms, including an
automatic translation scheme from CA algorithms to the corresponding VHDL was
proposed in [15]. FPGA-based CA implementation was also reported in [16]. How-
ever, to the best of our knowledge, there has been no reported work regarding the
principles and design philosophy for efficient low-level implementation of CA on
modern families of actual FPGAs, aiming to map the CA structures optimally to the
native architecture of the FPGA.

The rest of the chapter is organized as follows. In Sect. 6.2, we discuss the general
structure of CA, and introduce the relevant CA terminology. In Sect. 6.3, we discuss
the principles of adapting the CA structure to the native FPGA architecture. The CA
implementation results and related observations have been discussed in Sect. 6.4. We
conclude in Sect. 6.5.

6.2 Preliminaries on Cellular Automata

Structurally, CAconsists of a collection of identical building blocks termed as “cells,”
where each “cell” is a combination of its characteristic combinational logic (CL),
and a sequential element (e.g., a D-FF) to hold its state, as shown in Fig. 6.1. The
collection of all the states of the cells of a CA is defined as its state. Usually, the next
state of a particular cell is a function of its own current state, and the current state
of its two immediate neighbors—such a dependency is called a three-neighborhood
dependency. The particular function describing this dependency is called the rule of
the CA [9]. We have considered a common CA variant called “Null Boundary CA,”
where the terminal cells on either side are connected to logic-0 permanently.

Fig. 6.1 The Cellular Automata structure
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Fig. 6.2 Combinational logic for cells corresponding to rule-90 and rule-150

Let Xt = {q0(t), q1(t), . . . , qn−1(t)} denote the state of an n-cell CA at instance
t , where i denotes the position of an individual cell in the one-dimensional array of
cells, t denotes the time step, qi (t) denotes the output state of the i th cell at the t th
instant of time. Then, for a three neighborhood dependency, the next state of the i-th
cell is given by qi (t + 1) = f (qi−1(t), qi (t), qi+1(t)) where f () denotes the rule of
the CA [5, 9], which is inherently a Boolean function that can be expressed in the
form of a truth table. The decimal equivalent of the output bitstring as written in the
truth table is conventionally called the rule number for the cell. For example, the
next state logic equations for rule-90 and rule-150 [5] CAs are given in (6.1) and
(6.2) respectively, with their circuit representations depicted in Fig. 6.2.

Rule-90: qi (t + 1) = qi−1(t) ⊕ qi+1(t) (6.1)

Rule-150: qi (t + 1) = qi−1(t) ⊕ qi (t) ⊕ qi+1(t) (6.2)

where qi = 0 if i < 0 or i ≥ n. Table6.1 shows the next states computed according
to rules 90 and 150. The top row shows all the possible configurations of the left,
self, and right cells at instant t . The states at the instant of time (t + 1) are computed
according to the rules.

If the CA is linear, the combinational logic functions f () involves only XOR
logic. A CA having a combination of XOR and XNOR logic is called an additive
CA, whereas for nonlinear or non-additive CA, f () involves AND/OR logic [11].
If all CA cells obey the same rule, then it is termed as uniform CA, else it is a hybrid
CA. Linear CAs can also be described by their characteristic polynomials. From a
given polynomial, we can efficiently determine the structure of the corresponding
CA [4]. The corresponding CA by convention is usually described by a string of
0’s and 1’s, where, for example, ‘1’ refers to rule-150 and ‘0’ refers to rule-90. Our
proposed methodology can efficiently implement two-rule linear, additive, uniform,
and hybrid CAs.

Table 6.1 Rules 90 and 150

Neighborhood state: 111 110 101 100 011 010 001 000

Next state: 0 1 0 1 1 0 1 0 (rule 90)

Next state: 1 0 0 1 0 1 1 0 (rule 150)
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Table 6.2 Additive CA rules [5]

Complement Dependency Noncomplement

Rule Logic function Rule Logic function

195 qi−1(t) ⊕ qi (t) Left and self 60 qi−1(t) ⊕ qi (t)

165 qi−1(t) ⊕ qi+1(t) Left and right 90 qi−1(t) ⊕ qi+1(t)

153 qi (t) ⊕ qi+1(t) Self and right 102 qi (t) ⊕ qi+1(t)

105 qi−1(t) ⊕ qi (t) ⊕ qi+1(t) Left and self
and right

150 qi−1(t)⊕qi (t)⊕qi+1(t)

85 qi+1(t) Right 170 qi+1(t)

51 qi (t) Self 204 qi (t)

15 qi−1(t) Left 240 qi−1(t)

On minimization, the truth tables for the rules 15, 51, 60, 85, 90, 102, 105, 150,
165, 170, 195, 204, and 240 result in the logic functions noted in Table6.2, where
qi (t) denotes the state of the i th CA cell at the t th time instant, qi−1 and qi+1 refers
to the state of its left and right neighbors.

6.3 Adapting CA to the Native FPGA Architecture

Before the availability of the modern Xilinx FPGA families, the technologymapping
for CA-based circuits was an issue for which researchers proposed special FPGA
architectures [6] to efficiently realize XOR/XNOR dominated functions especially
using an AND-OR programmable logic fabric. However, with the advent of modern
FPGA families such as Virtex-6 that have 6-input LUTs which can map any arbitrary
six (or less) input functions, the problem has been simplified to a large extent. We
take advantage of this availability of large LUTs in the proposed designmethodology.

Packing is a key step in the FPGA tool flow that is tightly integrated with the
boundaries between logic synthesis, technology mapping, and placement [1]. For
Virtex-5 FPGAs, the packing technique targets the dual-output LUTs to achieve area
efficiency by exploring the feasibility of packing two logic functions into a single
LUT. This is possible whenever the two logic functions have no more than five dis-
tinct variables. In such cases, a more efficient mapping of the design is expected,
culminating into shorter interconnect wirelength, which in turn results in lesser crit-
ical path delay. However, our implementation results for Virtex-6 family of FPGAs,
which is an advanced and modified version of Virtex-5, clearly show that in spite
of the methodology adopted by the common FPGA CAD tools, the packing step
remains challenging, which often results in inefficient circuit implementations.

Consider an 1-D CA where the next state of a particular cell depends only on
itself, or on one or both of its two immediate neighbors. It is easy to deduce that
in such a case, any two adjacent cells can have a maximum of four distinct inputs.
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Fig. 6.3 Structure of a 16-bit 1-D linear CA for the (primitive) polynomial x16 + x5 + x3 + x2 +1
(or the equivalent hybrid rule < 0001111001001000 >) mapped on Xilinx Virtex-6 FPGAs,
following the proposed design philosophy [13]

In such a situation, the next state logic for any two cells of a CA can be packed
into a single LUT. Since Virtex-6 architectures facilitate registering of both the LUT
outputs to two FFs present in the same slice as that of the LUT, we can achieve a
compact FPGA realization of the architecture [13]. The architecture for a 16-cell 1-D
linear maximal length CA for the (primitive) polynomial x16 + x5 + x3 + x2 + 1 (or
the equivalent hybrid rule < 0001111001001000 >) [3] is shown in Fig. 6.3. Thus,
in this process, for an n-cell maximal length CA architecture, �n/8� Virtex-6 FPGA
slices are required.

6.4 CA Implementation Results

The circuits described in Sect. 6.3 were implemented on Xilinx Virtex-6 FPGA,
device family XC6VLX550T, package FF1760 and speed grade -2 using the Xilinx
ISE (v 12.4) design environment. Cellular Automata structures with polynomials of
the order 32, 48, 64, 80 and 96 (whose corresponding CA is given in Table6.3) were
implemented by two different techniques—the proposed design methodology (using
FlexiCore), and by RTL coding followed by unconstrained automatic logic synthesis
by ISE. The implementation results were compared with respect to their frequency
of operation, PDP, and hardware resource requirement (FFs, LUTs and slices), and
are tabulated in Table6.4. The polynomials are from [17] and, for example, the
entry in the polynomial field of Table6.4, 32 28 27 1 0, represents the polynomial
x32 + x28 + x27 + x + 1.
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Table 6.3 Polynomial and their corresponding CA [3]

Polynomial CA

32, 28, 27, 1 ,0 00001100010001110000110000000110

48, 28, 27, 1, 0 010100000001111101000100101101111001111000001010

64, 4, 3, 1, 0 1001110101001101111011011001100100111001101101111011001010111001

80, 38, 37, 1, 0 0101011001000010000010100011001110111101111010101101110111100000

0100001001101010

96, 49, 47, 2, 0 1111011110110000001000100110110111010110010001101110001101010011

0000000000011010110001001010010

Table 6.4 CA implementation results [13]

Polynomial Mode of
implementation

Freq (MHz) Power-delay
product (pJ)

#FF #LUT #Slice

32, 28, 27, 1, 0 RTL design 1014.20 31.61 32 30 8

Proposed design 1103.75 31.15 32 16 4

48, 28, 27, 1, 0 RTL design 320.41 37.36 48 46 12

Proposed design 1089.32 40.26 48 24 6

64, 4, 3, 1, 0 RTL design 361.40 43.80 64 64 1

Proposed design 1083.42 52.92 64 32 8

80, 38, 37, 1, 0 RTL design 414.08 64.05 80 78 20

Proposed design 976.56 59.08 80 40 10

96, 49, 47, 2, 0 RTL design 361.79 70.92 96 96 24

Proposed design 908.27 62.59 96 48 12

It was observed that for an RTL description of the CA circuit, the Xilinx Post
Place and Route results indicate that double the FPGA area is getting consumed than
what a compact realization should have taken. The speed of operation for the CA
circuits also drastically reduces as the order of the polynomial is steadily increased.

6.5 Summary

From the partial floorplan (physical) view of the mapped CA circuits in Fig. 6.4, it
can be observed, that for the RTL-based design, the inferred logic elements (shown
using dark shades) are not compactly packed within each slice and the logically
related slices are placed distant apart in a random, haphazard fashion throughout a
large FPGA area. On the contrary, for the proposed design, the floorplan shows a very
compact realization of the circuit by taking advantage of the dual-output nature of the
LUTs and by placing the logic elements having proximity of bit-indices, in the closest
physical proximity on the target FPGA fabric. Thus, we can conclude that FPGA
CAD tools, for designs derived fromRTLdesign descriptions, cannot exploit the local
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Fig. 6.4 Partial floorplan views for the CA circuits mapped onto the Virtex-6 FPGA fabric. a Partial
floorplan view for RTL design of CA circuit. b Partial floorplan view for proposed desgin of CA
circuit

neighborhood property of CAs, and ultimately result in long interconnects leading
to serious performance degradation. This is undesirable as speed is critical from
the hardware accelerator point of view in building high-performance cryptographic
cores [14]. The higher resource requirement also shows that the mapping of the
circuit on the FPGA fabric is not optimal for the RTL-derived implementations.

In the next chapter, we shall study the features of the FlexiCore design automation
tool and its CADflow that was developed by us, alongwith two case studies of system
design examples where a larger system is built from smaller subsystems or circuits
which are supported by theFlexiCore platform and study the associated performance
advantages obtained.
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Chapter 7
Design Automation and Case Studies

Abstract All the architectures proposed in the previous chapters have been realized
using the bit-sliced design paradigm. The architectures are very regular in their struc-
tures, thereby serving as a motivation to automate the generation of the arithmetic
circuit descriptions for the target FPGA platform. In this chapter, we will introduce
the proposed CAD tool for design automation named FlexiCore. We also present two
relevant case studies comprising of multiple modules, whose HDL and placement
constraints can be generated using FlexiCore.

7.1 Introduction

The design of all the circuits described in the previous chapters has been automated
using a CAD tool developed by us. We call the CAD tool FlexiCore, in short for
“Flexible Arithmetic Soft Core Generator”. Presently, FlexiCore supports Hybrid
RCA, Absolute Difference Circuit, Integer Multiplier, Integer Squarer, Universal
Shift Register, Comparator, Loadable Bidirectional Binary Counter, and Cellular
Automata Circuits as discussed in Chaps. 4–6. It is flexible in the sense that the
operand widths for the mapped circuits can be varied, and the CAD tool allows
partial control to the user over the placement of the circuits on the FPGA fabric. The
tool is developed in JAVA, and includes a simple GUI. The CAD software executable
is invoked from the TCL command prompt in-built in Xilinx ISE using a top-level
TCL script.

The rest of the chapter is organized as follows. In Sect. 7.2, we give details of the
FlexiCore design automation tool developed by us that generates the HDL and place-
ment constraints for arithmetic and CA circuit descriptions. In Sect. 7.3, we present
the case studies for two multimodule designs—a GCD calculator and a matrix
multiplication circuit, and demonstrate the effectiveness of the proposed design
methodology. We conclude in Sect. 7.4.
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7.2 The FlexiCore CAD Tool

The FlexiCore design flow is depicted in Fig. 7.1. Here, the top-level script invokes
a GUI which displays the list of circuits currently supported by FlexiCore, and
prompts the user to enter (in the GUI entry fields) the circuits (along with their
operand widths and whether the user wants pipelined/non-pipelined version), for
which the user wants constrained placement-based high performance design. The
GUI for designing a pipelined 64-bit adder is shown in Fig. 7.2. The user can also
optionally enter the starting coordinate for the entire constrained placement exercise.
If this is not provided, FlexiCore determines the feasible starting coordinate from
the existing Xilinx proprietary project constraints file called the “User Constraints
File” (.ucf).

After the user enters her options, FlexiCore examines the feasibility of placement
of the selected building blocks on the FPGA fabric, in a regular fashion as described
in the previous chapters, with the starting coordinate entered by the user as origin,

Fig. 7.1 The FlexiCore design flow for arithmetic circuits
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Fig. 7.2 FlexiCore GUI for arithmetic circuits

or the starting coordinate inferred. It takes into consideration the existing placement
constraints, if any, in the project constraints file. If the placement is deemed feasible,
FlexiCore performs the following:

• Generates the Verilog module descriptions for the selected circuit building blocks,
and adds the files to the current project. Care is taken to ensure that no hard-
ware primitive instance on the FPGA is used more than once in building the
high-performance building blocks. Pipeline registers as required, are automati-
cally inserted. At present, FlexiCore supports two options—either a maximally
pipelined implementation (optimized for Virtex-5 platform), or a purely combina-
tional circuit. We expect to support variable latency circuits in future.

• Modifies the project .ucf, by adding the placement constraints for the generated
high-performance circuit building blocks.

• Creates a log file to provide the user with all the necessary information about the
generated modules.

If FlexiCore fails to find a feasible placement configuration, it reports it to the user
and again prompts her to enter a (reduced) number of building blocks, or a different
starting coordinate. Note that the situation where FlexiCore fails to find a feasible
placement rarely arises, given the large availability of resources on a Virtex family
FPGA. We did not find any such scenario with our real-life design test cases.

To accommodate the Cellular Automata circuits into the CAD tool for their auto-
matic generation, a provision has been kept for the user to invoke the GUI, which
displays all the list of rules (see Table6.2) corresponding to which equivalent CA
circuits can be generated, and prompts the user to enter the following fields: the two
CA rule numbers, their corresponding encoding of 0 and 1, and the hybrid CA rule
comprising of a string of 0’s and 1’s. The CAD tool interprets the string by reading

http://dx.doi.org/10.1007/978-81-322-2520-1_6
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two bits at a time, calculates the truth table of the dual-output LUTs appropriately
for realizing the next state logic for the CA cells, and instantiates the required FPGA
logic elements in the HDL code. The remaining design flow remains to be the same
as for arithmetic circuits. The design flow, particularly for CA circuits, is shown
in Fig. 7.3. An example snapshot of the FlexiCore generated log file for the CA
rule “00001100010001110000110000000110” (as entered in the GUI of FlexiCore
shown in Fig. 7.4) corresponding to rule-90 (encoded as ‘0’) and rule-150 (encoded
as ‘1’) is shown in Fig. 7.5. The computational complexity of FlexiCore can be ana-
lyzed as a function of the input size of the operands. For adders, absolute difference
circuits, universal shift registers, comparators, and counters, the computational com-
plexity is O(n), where n is the operand width of the real-time data inputs. However
for multipliers and squarers, the computational complexity is a quadratic function of
the operand width n, i.e., of O(n2). For CA circuits, the complexity is O(n), where
n is the order of the primitive polynomial corresponding to the CA rule which is
entered in the GUI.

Fig. 7.3 The FlexiCore design flow for CA circuits
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Fig. 7.4 FlexiCore GUI for CA circuits

Fig. 7.5 FlexiCore log file for CA circuits

7.3 Case Studies

We shall present case studies of two arithmetic circuits—aGreatest CommonDivisor
(GCD) calculator circuit and a Distributed Arithmetic (DA)-based Matrix Multipli-
cation circuit. Both the architectures use several of the arithmetic building blocks
supported by the FlexiCore platform.
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Algorithm 1: GCD Calculation Algorithm
Input: 2 unsigned integers: P and Q.
Output: S : GCD of P and Q

1 Rem(P, Q): Remainder when P is divided by Q
2 abs(P − Q): Absolute difference of P and Q
3 min(P, Q): Minimum of P and Q
4 Computation_Over_Flag ← 0, R ← 0
5 begin
6 while P �= Q do
7 if (Rem(P,2)==0) then
8 P ← P/2;
9 if (Rem(Q,2)==0) then

10 Q ← Q/2;
11 R ← R + 1;
12 else
13 if (Rem(Q,2)==0) then
14 Q ← Q/2;
15 else
16 P ← abs(P − Q);
17 Q ← min(P, Q);

18 S ← P ∗ (2R);
19 Computation_Over_Flag ← 1;

7.3.1 GCD Calculator Circuit

We now present the complete architecture and implementation results for a Great-
est Common Divisor (GCD) computation circuit. This particular architecture was
chosen because it utilizes several of the building blocks currently provided by the
FlexiCore platform such as the absolute difference circuit, counter and a barrel shifter.
The architecture has been derived from the Binary GCD algorithm [10] which has
been explained in Algorithm 1. This algorithm uses simpler arithmetic operations
than the conventional Euclidean GCD algorithm as it replaces complex operations
such as division and multiplication with division and multiplications by powers of
two. Assuming a binary representation of integers, such operations can be very effi-
ciently implemented using “right shift” and “left shift” operations, comparisons, and
subtraction [3], thereby making it suitable for hardware implementation .

7.3.1.1 Proposed Architecture of Binary GCD Circuit

The architecture for the algorithm at the block diagram level has been shown in
Fig. 7.6. We present two multifunction registers P and Q which are loaded in accor-
dance with the control signals: active low load control signal INIT which accepts two
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Fig. 7.6 Overall architecture of the GCD computation circuit

unsigned integers as inputs whose GCD has to be computed, and LSBs of registers P
and Q as depicted in Table7.1. The multifunction registers and their associated com-
binational function logic which is a nonstandard representation of a 4:1 multiplexer,

Table 7.1 Function table for the multifunction registers and counter

Control/select signals Registers Counter

INIT P0 Q0 P Q R

0 X X Load Load 0

1 0 0 P/2 Q/2 R + 1

1 0 1 P/2 Q R

1 1 0 P Q/2 R

1 1 1 |P − Q| min(P, Q) R
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have been mapped intelligently to the 6-input LUTs and wide-function multiplexers
MUXF7 available in each slice of the FPGA as shown in Fig. 7.7 to ensure compact
implementation.

The absolute difference circuit has been pipelined using the “FDCPE” Xilinx
primitive [13] which is a D-FF with clock enable and asynchronous preset and clear.
These FFs are presetted if the output from the previous carry chain of the adjacent
slice is high and cleared if low.

An intermediate output A_l_B (which decided whether to compute A − B or
B−A) of the absolute difference circuit serves as a select line to themultiplexerwhich
outputs the minimum of two numbers. This architecture to compute the minimum
of two numbers has been realized using dual-output LUTs as shown in Fig. 7.8. The
counter keeps track of the number of left shifts to be applied to the final contents
of the P register after the last iteration. We realize such a shifter in hardware using
a barrel shifter. The schematic of the implementation structural details of the barrel
shifter using dual-output LUTs is shown in Fig. 7.9. Each dual-output LUT realizes
the functionality of two adjacent multiplexers present in the same row or stage. The
barrel shifter is composed of a number of stages as decided by the shift amount
or the width of the unsigned integers given as inputs, where stage i (i ≥ 0) can
implement a 2i/0 bit shift. Thus, the data to be shifted is given to the data inputs

Fig. 7.7 Multifunction register

Fig. 7.8 Circuit to compute minimum of two numbers
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Fig. 7.9 LUT-level implementation of the barrel shifter

of the multiplexers, whereas, the amount of left shift is given as input to the select
lines of the multiplexers. The final output of the barrel shifter gives the GCD of two
numbers.

7.3.1.2 GCD Implementation Results

The GCD computation circuit for 32-bit operands was implemented on the Xilinx
Virtex-5 FPGA using two approaches: behavioral Verilog modeling, and second
using constrained arithmetic circuit descriptions generated by FlexiCore. Results
are tabulated in Table7.2, where the two input operands are 70 and 100. The results
clearly indicate that using the second approach, the designer can achieve a higher fre-
quency and lower PDP value with considerable lesser amount of hardware resources.
This was achievable due to an optimized realization of the absolute difference cir-
cuit, minimum detector circuit, and barrel shifter by exploiting the carry chains and
LUTs efficiently. The intelligent combination of usage of the LUT coupled with the
wide-function multiplexer for realizing the multifunction register leads to significant
hardware overhead reduction. Also the entire realization of the GCD circuit has been
done following the constrained placement exercise leading to the overall superior
performance.
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Table 7.2 Implementation results for a 32-bit GCD circuit (operands: 100 and 70)

Design style Freq (MHz) Power-delay product (pJ) #FF #LUT #Slice

Behavioral
modeling

160.49 745.85 69 356 208

Primitive
instantiation

214.73 508.87 87 298 93

7.3.2 Distributed Arithmetic-Based Matrix
Multiplication Circuit

Distributed Arithmetic (DA) is an important FPGA technology as it replaces explicit
multiplications that limit the speedof operation, byROMlookupswhich is an efficient
technique to implement on FPGAs. Themost often encountered form of computation
in DSP is a sum of products which is executed most efficiently by DA [11]. It is
used to design bit-level architectures for vector–vector multiplications. Each word
in the vector is represented as a binary number and the multiplications are reordered
and mixed in such a way that the arithmetic becomes “distributed” through the
structure [9]. In this section,we shall discuss the architecture formatrixmultiplication
using DA.

Consider two matrices A and B of dimensions p × m and m × n which are to be
multiplied giving matrix C of dimension p × n:
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where,

c11 = a11b11 + a12b21 + · · · + a1mbm1

cpn = ap1b1n + ap2b2n + · · · + apmbmn

In [2], authors had proposed bit-level systolic array architecture for implementa-
tion of matrix product using a serial–parallel Baugh–Wooley multiplier. An FPGA-
based parameterisable system for matrix product implementation using both systolic
array and bit serial DAmethodologies have been presented in [1]. High performance
systolic arrays for band matrix multiplication were proposed in [14]. However, none
of these works provide an insight into the methodology to map their processing
elements into the target FPGA architecture optimally.

We now introduce themathematical logic supportingDA to realize the elements of
thematrixC .We assume that each element of thematrix B, bi j , is a two’s complement
Bx -bit wide number. If the coefficients aik are known a priori, the partial product term
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aikbk j becomes a multiplication with a constant. In this way, several optimizations
to the constant coefficient multiplier architectures can be carried out [12].

ci j =
m∑

k=1

aikbk j

=
m∑

k=1

aik

(Bx −2∑

l=0

2l bk j,l − 2Bx −1bkj,Bx −1

)

= −
m∑

k=1

2Bx −1bkj,B−1aik +
m∑

k=1

[(aikbk j,0
)
20 + · · · + (

aikbk j,Bx −2
)
2Bx −2]

= − (
ai1b1 j,Bx −1 + · · · + aimbmj,Bx −1

)
2Bx −1 + (

ai1b1 j,0 + · · · + aimbmj,0
)
20

+ (
ai1b1 j,1 + · · · + aimbmj,1

)
21 + · · · + (

ai1b1 j,Bx −2 + · · · + aimbmj,Bx −2
)
2Bx −2

=
Bx −1∑

l=0

2l ×
m∑

k=1

aik × bkj,l
︸ ︷︷ ︸

f (aik ,bk j,l )

=
Bx −1∑

l=0

2l ×
m∑

k=1

f (aik , bkj,l ) (7.1)

The preferred implementationmethod is to realize themapping f (aik, bkj,l) using
a ROM. Thus the ROM can be preprogrammed to accept an Bx -bit input vector bkj

and output f (aik, bkj,l) which are precomputed and stored in the ROM. The indi-
vidual mappings f (aik, bkj,l) are weighted by the appropriate power-of-two factor
(realized by simple left-shift operations) and added, thereby leading to a multiplier-
free realization [8].

Some recent works [5–7] have proposed dynamically run-time reconfigurable
finite impulse response (FIR) filter where the filter coefficients can be reconfigured
during run-time using Xilinx run-time, reconfigurable 5-input LUT, CFGLUT5, as
a primitive [13]. It uses the 6-input LUTs present in SLICEM logic of Virtex-5,
Virtex-6, Virtex-7, and Spartan-6 FPGAs and provides configuration interface pins
comprising of configuration data in (CDI), configuration data out (CDO), a configu-
ration clock (CLK), and a clock enable (CE) as shown in Fig. 7.10. The entire contents
of the LUT can be changed by loading a new 32-bit configuration vector at CDI in

Fig. 7.10 5-input
dynamically reconfigurable
Lookup Table (LUT) [13]
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32 clock cycles. Hence, for our implementation, the matrix A which was assumed to
have constant coefficients can be completely modified once in every 32 clock cycles
using a simple state machine and staging logic to reload the memory contents of
the dynamically reconfigurable LUTs [12]. Such run-time self-reconfigurable archi-
tecture has been proposed in [4] to design constant multipliers (both signed and
unsigned) on FPGA, where the constants can be reloaded in run-time.

7.3.2.1 Proposed Distributed Arithmetic-Based Architecture
for Matrix Multiplication

Going by the consideration that performance has been our primary design target,
and noting the abundance of logic resources that modern family of FPGAs promise,
we go for a real-time signal processing application where maximum speed can be
achieved through implementation of a fully pipelined word-parallel architecture as
shown in Fig. 7.11. We have exploited the dual-output LUT nature of the CFGLUT5
primitives for retrieving the contents of the precomputed values stored in it by passing
the bit vectors of the elements from the matrix B as address lines. The output of the
LUTs are passed via pipeline registers as shown in the figure forming a pipelined
adder tree as we keep moving from one stage of the adder to the next. Also, we

Fig. 7.11 Proposed architecture for DA-Based Matrix Multiplication using reconfigurable LUTs
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try to push most of the left-shift operations toward the final output of the adder tree
as much as possible for reduction of word size and consequently, the size of the
intermediate ripple carry adders that decide the critical path of the architecture. Each
of the HDL descriptions of the ripple carry adders and their subsequent placement
constraint files have been generated using the FlexiCore platform.

7.3.2.2 Xilinx IP Core-Based or DSP-Based Architecture for Matrix
Multiplication Using Constant Coefficient Multipliers

It is to be noted that neither IP Core-based fabric logic or logic realized using DSP
slices offer dynamic reconfigurability of the constant cofficients that serves as one
of the input operands of a multiplier logic. Hence, it is difficult to obtain an exact
logic equivalent of the CFGLUT5 primitives using existing design philosophies. For
comparison of our proposed architecturewith circuits realized through IPCore-based
fabric logic and DSP logic, we have considered constant coefficient multipliers as
shown in Fig. 7.12. Design elements such as constant coefficient signed multipliers
and signed adders have been designed using the Xilinx IP Core-based CAD tool. On
the other hand, DSP slices can be configured to support a multiply adder/subtractor
logic with the help of which matrix multiplication was achieved.

Fig. 7.12 Xilinx IP
Core-based or DSP-based
architecture for matrix
multiplication using constant
coefficient multipliers
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Table 7.3 Implementation results for multiplication of a 4 × 4 with a 4 × 2 matrix where all the
16-bit elements of the 4 × 4 matrix have been chosen as a unique (two’s complement) constant,
32767, and all elements of the 4 × 2 matrix are user-input 16-bit two’s complement numbers

Design style Freq (MHz) Latency Power-delay
product (pJ)

#FF #LUT #DSP #Slice

IP core based 125.15 3 616.27 294 780 0 257

DSP slice based 171.32 3 418.86 294 95 8 51

Proposed design 602.41 4 973.42 1194 928 0 258

7.3.2.3 Implementation Results for Matrix Multiplication Circuit

Implementation results for multiplication of a 4 × 4 with a 4 × 2 matrix where all
the 16-bit elements of the 4 × 4 matrix have been chosen as a unique 16-bit (two’s
complement) constant, 32767.Thiswasdone to compare theworst-case performance,
as use of the constant 32767 results in maximum hardware and thus slower speed
in the IP Core-based designs. All elements of the 4 × 2 matrix are real-time data
inputs, each of which are 16-bit two’s complement numbers. The architecture has
been compared for three design styles—IP Core-based fabric logic, DSP slice-based
logic, and the proposed architecture with constrained placement. Results clearly
reveal that the proposed architecture clearly outperforms other design styles with
respect to speed. This is because the critical path is dictated only by the delay of the
longest fast carry chain adder, realized by careful, constrained placement. The PDP
is however higher as we realize a fully pipelined word-parallel architecture for which
the hardware consumption is higher. TheXilinx IPCore-based design has amultiplier
and an adder in its critical path and coupled with random, unconstrained placement,
thus adversely affecting the operating frequency of the resultant implementation. For
the DSP-based design, which has configured DSP slices and registers, the speed is
much slower compared to the proposed architecture (Table7.3).

7.4 Summary

The FlexiCore CAD tool is equipped with the facility of automatically generating
synthesizable HDL and constraint placement directives for arithmetic circuits. The
utility of the CAD tool has been done for design of multimodule architectures to
prove its effectiveness and ease of design. In the next section, we conclude the book
and list some of the future research directions on the same principles of this work.
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Chapter 8
Conclusions and Future Work

Abstract This chapter summarizes the contributions of this book. It also provides
certain important pointers to potential future research direction in the field of FPGA-
based arithmetic circuit design.

8.1 Introduction

In the world of high-speed digital circuits, FPGAs have steadily grown in stature as
a platform of choice in the last two decades. The most recent technological advance-
ments ensure huge logic support and a host of other features, including on-chip
embedded processors and DSP blocks (hard macros). Careful design considerations
such as custom design methodology with manual instantiation of hardware primi-
tives and macros, and their careful, constrained placement on the FPGA fabric leads
to very high performances in terms of speed. We have considered various arithmetic
circuits which are very regular in their architectures, and have shown how they can
be implemented following the bit-sliced design paradigm. Designs that are pipelined
and have a very regular dataflow, like those considered in our work, usually lend
themselves to regular floorplanning [3]. Due to the coarse nature of the routing
matrix in FPGAs, placement is vastly more important in the context of ensuring high
performance, in comparison to routing [3]. Since each slice of an FPGA is register-
rich, pipelined implementations can be done with ease without consuming additional
number of slices.

8.2 Contributions of the Book

The contributions of this book can be summarized as follows:

• In Chaps. 2 and 3, we have presented the advanced FPGA architectures of Xilinx
FPGAs, and have stressed upon the fact that the knowledge of the structural imple-
mentation is an important prerequisite for designing optimized arithmetic circuits
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on an arbitrary FPGA fabric. Only the knowledge of the structural implementation
can help the designer to appropriately configure and optimally utilize the LUTs,
carry chains and wide function multiplexers, aided through appropriate Boolean
logic manipulations, and place the logically related primitives in closest proximity
to one another using placement constraints.

• We have taken up different examples of pipelined implementations of datapath
and controlpath arithmetic circuits in Chaps. 4 and 5, and have exhibited supe-
rior operand width scalability of the designs with respect to the performance of
the circuits. In Chap. 6, we have discussed the improved FPGA implementation
of pseudorandom binary sequence generator circuits based on cellular automata,
following the proposed methodology.

• In Chap.7, we have described the operations of a CAD software tool FlexiCore
developed by us, that leverages the regularity of the arithmetic and CA circuits,
and automatically generates the hardware descriptions and related placement con-
straints.

• The design automation tool was utilized to implement multiple modules for two
test circuits: (a) GCD calculator and (b) Distributed Arithmetic-based matrix mul-
tiplier. Implementation results reveal that our implementations comfortably out-
performs all other modes of implementations.

It must also be noted that no amount of changes in the option settings of the Xilinx
ISE tool for optimization goal and effort, placer extra effort, global optimization, and
other additional synthesis and timing constraints to realize circuits using existing
CAD tools or design styles can infer or match up the high speed of our proposed
implementations.

8.3 Future Research Directions

While high-performance architecture development for arithmetic circuits on FPGAs
has been thoroughly researched in the exiting literature, only a handful of works have
discussed a low-level custom implementation-based design philosophy on FPGA
fabric. This was the primary motivation for us to pursue research in this direction,
and can pave the way for many other future research directions on this topic. All
the architectures and circuits discussed in this book are very useful in many signal
processing and image processing applications. Certain research directions can be
pursued from here.

• It was pointed out in Chap.4 as to how iterative array structures can be mapped
to the Xilinx fabric logic by implementing multipliers and squarers using hybrid,
carry save approach. In [6], an iterative array for nonrestoring binary division was
proposed, whereas in [7], a cellular array for nonrestoring extraction of square
roots was proposed. Both the designs use controlled add/subtract cells to per-
form the required subtraction/addition as prescribed by the algorithm. Mapping
of controlled add/subtract logic to LUT and carry chain fabric has been discussed
in detail in Sect. 4.2 of Chap.4. Since optimized implementation of dividers and
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square root extractors on FPGA has relatively been an unexplored topic, a signif-
icant contribution can be made in this area.

• Chap.6 discusses FPGA implementations of two-rule, linear, one-dimensional cel-
lular automata structures. A similar philosophy can be extended toward optimized
implementation of two-dimensional cellular automata having higher neighbor-
hood dependencies [2, 8]. Two classes of circuits having structural and functional
similarities to CAs and havingwide application domains are Linear Feedback Shift
Registers (LFSRs) and Multiple Input Signature Register (MISR). While LFSRs
are widely used as source of pseudorandom bitstreams, MISRs are used for test
response compaction in IC testing. For LFSRs, longer sequences of random num-
bers require a longer LFSRwith higher hardware overhead. In [5], an area-efficient
LFSR implementation was proposed where the number of FF stages between any
two taps can be realized using the SRL16 primitives. Advanced Virtex and Spar-
tan families support special LUTs that can realize upto a 32-bit stage delay as
described in Sect. 3.3 of Chap.3. A MISR has a similar structure; the only differ-
ence being the input to every FF is fed through an XOR/XNOR gate [4]. Under
such a situation, MISR can be realized in a similar fashion as has been done for
the CA circuits described in Chap.6, subject to the circuit complexity.

• Research can be extended further for designing other signal processing applica-
tions using a similar design philosophy like Finite Impulse Response (FIR) filters,
Discrete Fourier Transform (DFT), and Fast Fourier Transform (FFT) processors
that involve computation of trigonometric functions using CORDIC (COordinate
Rotation DIgital Computer) algorithm [9]. The proposed design methodology is
also applicable in the implementation of high-performance floating point arith-
metic circuits.

• Further research work can be focused upon improving the proposed CAD tool for
achieving automatic pipelining inside general arithmetic or DSP circuits, where
user only needs to input the desired latency. Another approach for system-level
pipelining can be extended to develop a tool which has the capability to decide
on the appropriate number of pipeline stages to get maximum performance by
studying delay models for operators as well as the target fabric.

• All our proposed architectures have been targeted toward Xilinx FPGA platform.
The primary reasons behind this choice were the ease of availability of the Xilinx
ISE software, flexibility of low-level custom design techniques on the software
version available, ease of integration of the CAD tool with Xilinx ISE, and widely
available user manuals providing detailed literature on platform-specific FPGA
architecture. Significant researchwork can be carried out on the applicability of the
same scheme for other FPGAplatforms. Altera is amajor FPGAvendor alongwith
Xilinx. However, the difficulty for deploying the same scheme on Altera platforms
can be attributed toward the unavailability of the user guides and manuals for
Altera platforms describing the native low-level primitives. Though a few related
documents do exist [1], they contain very little information about how to do such
low-level design optimally and effectively.Wewould target FPGA platforms other
than Xilinx in future, with the possibility of modifying the implementations to suit
the target FPGA platform.
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